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Abstract

We prove the existence of a positive solution for the three point boundary value problem o
scaleT given by

y�� + f (x, y) = 0, x ∈ (0,1] ∩ T, y(0) = 0, y(p) = y
(
σ2(1)

)
,

wherep ∈ (0,1) ∩ T is fixed andf (x, y) is singular aty = 0 and possibly atx = 0, y = ∞. We do
so by applying a fixed point theorem due to Gatica, Oliker, and Waltman [J. Differential Equa
79 (1989) 62] for mappings that are decreasing with respect to a cone. We also prove the an
existence results for the related dynamic equationsy∇∇ + f (x, y) = 0, y�∇ + f (x, y) = 0, and
y∇� + f (x, y) = 0 satisfying similar three point boundary conditions.
 2004 Elsevier Inc. All rights reserved.
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1. Introduction

We are interested in the existence of a positive solution for the three point bou
value problem on a time scaleT,

y�� + f (x, y) = 0, x ∈ (0,1]T, (1.1)

y(0) = 0, y(p) = y
(
σ 2(1)

)
, (1.2)
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wheref (x, y) is singular aty = 0, and possibly atx = 0 andy = ∞. (An interval sub-
scripted withT is the one intersected withT.) We make the following assumptions:

(A1) p ∈ (0,1)T is arbitrary but fixed; 0,1∈ T with 0 right dense;
(A2) f : (0,1]T × (0,∞)T → (0,∞) is decreasing iny for everyx ∈ (0,1]T;
(A3) limy→0+ f (x, y) = ∞ and limy→∞ f (x, y) = 0, uniformly on compact subsets o

(0, σ 2(1)]T;

(A4) 0<
∫ σ2(1)

0 f (x, gθ (x))�x < ∞ for all θ > 0 andgθ as defined in (2.1).

To make this work reasonably self-contained we have included the basic definition
the theory of time scales in Appendix A.

The seminal paper by Gatica, Oliker, and Waltman [21] in 1989 has had a profoun
pact on the study of singular boundary value problems for ordinary differential equa
(ODEs). They studied singularities of the type in (A2)–(A4) for second order Sturm
Louiville problems, and their key result hinged on an application of a particular fixed
theorem for operators which are decreasing with respect to a cone. Various authors ha
used these techniques to study singular problems of various types. For example, He
and Yin [24,25] as well as Eloe and Henderson [15–17] have studied right focal, foca
jugate, and multipoint singular boundary value problems for ODEs. Baxley [12], Erb
Kong [19], and Fink, Gatica, and Hernández [20] are also excellent references which
use of [21]. For completeness, we do note that there are papers which deal with s
problems of this type without appealing to the results of [21]; for example, see [28].

However, the time scale setting here is much more general since ODEs and fin
ference equations are but special cases of thedynamic equationgiven by (1.1). This is a
rapidly expanding area of research; we refer the reader to the excellent introductory
Bohner and Peterson [14] as well as their recent research monograph [13]. Problem
as (1.1) are dealt with quite extensively in [7] as well as in [1,13,14]. The paper by
Sheng, and Henderson [18] is a very interesting study in the numerical aspects o
equations. We note that this is the first work (to our knowledge) that deals with sin
boundary value problems in a general time scales setting.

In particular, three point boundary conditions such as (1.2) have been investigated
the continuous case (ODEs), the discrete cases (difference equations), and the gen
scales case by Anderson [3–5], Gupta [22,23], and Ma [29], to name a few. Very rec
Singh [30] established the existence of a positive solution to (1.1), (1.2) in the specia
T = R by using the methods of [21]; certainly [30] is the motivation for this paper.

We have organized the paper as follows. In Section 2, we start with some prelim
definitions and results from the study of cones in Banach spaces and state an impo
fixed point theorem from [21]. We formulate two lemmas which establish a priori u
and lower bounds on solutions of (1.1), (1.2). We then state and prove our main
tence theorem. In Section 3, we consider the so-called “nabla–nabla” problem ana
to (1.1) satisfying similar boundary conditions and singularity assumptions on the non
mogeneity. In Section 4, we consider the “mixed” dynamic equations of “delta–nabla
“nabla–delta” type with boundary conditions similar to (1.2). The Green’s functions for a
four problems here are new. For the convenience of the reader, we conclude with
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2. The delta–delta problem

We begin by giving definitions and some properties of cones in a Banach spac
references, see Krasnosel’skii [27] and Amann [2].

Let B be a real Banach space. A nonempty setK ⊂ B is called aconeif the following
conditions are satisfied:

(a) the setK is closed;
(b) if u,v ∈ K thenαu + βv ∈K for all realα,β � 0;
(c) u,−u ∈K imply u = 0.

A coneK is normal in B provided there existsδ > 0 such that‖e1 + e2‖ � δ, for all
e1, e2 ∈ K with ‖e1‖ = ‖e2‖ = 1. Given a coneK a partial order, �, is induced onB
by x � y, for x, y ∈ B if and only if y − x ∈ K. For clarity, we sometimes writex � y

(w.r.t.K). If x, y ∈ B with x � y, let 〈x, y〉 denote theclosed order interval between x an
y given by〈x, y〉 = {z ∈ B | x � z � y}.

The following result due to Krasnosel’skii will be needed later.

Theorem 2.1 [27, p. 24].If K ⊂ B is a normal cone, then closed order intervals are no
bounded.

Next we state the fixed point theorem due to Gatica, Oliker, and Waltman [21] wh
instrumental in proving our existence results.

Theorem 2.2 (Gatica–Oliker–Waltman fixed point theorem).Let B be a Banach space
K ⊂ B be a normal cone, andD ⊂K be such that ifx, y ∈ D with x � y, then〈x, y〉 ⊂ D.
LetT :D → K be a continuous, decreasing mapping which is compact on any closed
interval contained inD, and suppose there exists anx0 ∈ D such thatT 2x0 is defined
(whereT 2x0 = T (T x0)) andT x0, T

2x0 are order comparable tox0. ThenT has a fixed
point in D provided that either:

(i) T x0 � x0 andT 2x0 � x0;
(ii) x0 � T x0 andx0 � T 2x0; or
(iii) The complete sequence of iterates

{
T nx0

}∞
n=0 is defined and there existsy0 ∈ D such

thatTy0 ∈ D with y0 � T nx0 for all n ∈ N.

We seek positive solutions,y : [0, σ 2(1)]T → R
+, satisfying (1.1), (1.2). To accomplis

this, we transform (1.1), (1.2) into an integral equation involving the appropriate Gr
function, and seek fixed points of the underlying integral operator. We will then show
these fixed points form a sequence of iterates converging to a solution of (1.1), (1.2)
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First, note that positive solutions of (1.1), (1.2) are also concave on[0, σ 2(1)]T. Con-
sider the Banach space,B = C[0, σ 2(1)]T, with the norm

‖u‖ = sup
x∈[0,σ 2(1)]T

∣∣u(x)
∣∣.

Define the normal cone,K ⊂ B, via

K := {
u ∈ B | u(x) � 0 on

[
0, σ 2(1)

]
T

}
,

and define thetent functiong1 : [0, σ 2(1)]T → [0,∞) by

g1(x) =
{

x, if 0 � x � p,
p, if σ(p) � x � σ 2(1).

Finally, for θ > 0, let

gθ (x) = θ · g1. (2.1)

We observe that for each positive (and concave) solution,y(x), of (1.1), (1.2), there exist
someθ > 0 such thatgθ (x) � y(x) for all x ∈ [0, σ 2(1)]T.

We will apply Theorem 2.2 to operators whose kernel is the Green’s functio
−y�� = 0 and satisfies (1.2). The Green’s function,G : [0, σ 2(1)]T × [0, σ (1)]T →
[0,∞), is given by

G(x, t) =




x, x � t � p,
σ(t), σ (t) � x andt � p,
σ2(1)−σ(t)

σ2(1)−p
· x, σ (p) � t andx � t ,

σ(t) − x + σ2(1)−σ(t)

σ2(1)−p
· x, σ (p) � t � σ(t) � x.

Notice thatG(x, t) > 0 for (x, t) ∈ (0, σ 2(1))T × (0, σ (1))T.
DefineD ⊂K by

D := {
φ ∈K | ∃θ(φ) > 0 such thatφ(x) � gθ (x), x ∈ [

0, σ 2(1)
]
T

}
,

and the integral operatorT :D →K by

T u(x) :=
σ2(1)∫
0

G(x, t)f
(
t, u(t)

)
�t.

It suffices to defineD as above, since the singularity inf precludes us from definingT on
all of K. Furthermore, it can easily be verified thatT is well-defined. In that direction, not
that forφ ∈ D there existsθ(φ) > 0 such thatgθ (x) � φ(x) for all x ∈ [0, σ 2(1)]T. Since
f (x, y) decreases with respect toy, we seef (x,φ(x)) � f (x, gθ(x)) for x ∈ (0, σ 2(1)]T.
Thus,

0 �
σ2(1)∫
0

G(x, t)f
(
t, φ(t)

)
�t �

σ2(1)∫
0

G(x, t)f
(
t, gθ (t)

)
�t < ∞.

Similarly, T is decreasing with respect toD.
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Lemma 2.1. φ ∈ D is a solution of(1.1), (1.2)if and only ifT φ = φ.

Proof. One direction of the lemma is obviously true. To see the other direction

φ ∈ D. Then(T φ)(x) = ∫ σ2(1)

0 G(x, t)f (t, φ(t))�t , and(T φ)��(x) = −f (x,φ(x)) < 0
for x ∈ (0,1]T. Moreover,(T φ)(x) � 0, (T φ)(0) = 0, and(T φ)(p) − (T φ)(1) = 0. Thus,
there exists someθ(T φ) such that(T φ)(x) � gθ (x), which implies thatT φ ∈ D. That is,
T :D → D.

We now present two lemmas that are required in order to apply Theorem 2.2. The fir
establishes an a priori upper bound on solutions, while the second establishes an
lower bound on solutions.

Lemma 2.2. If f satisfies(A1)–(A4), then there exists anS > 0 such that‖φ‖ � S for any
solutionφ ∈ D of (1.1), (1.2).

Proof. For the sake of contradiction, suppose that the conclusion is false. Then there
a sequence,

{
φn

}∞
n=1, of solutions to (1.1), (1.2) such thatφn(x) > 0 for x ∈ (0, σ 2(1)]T,

and‖φn‖ � ‖φn+1‖ with limn→∞ ‖φn‖ = ∞. Note that for any solutionφ of (1.1), we have
φ��(x) = −f (x,φ(x)) < 0 on (0,1]T; that is,φ is concave. In particular, the graph
eachφn is concave. Furthermore, we claim that the boundary conditions (1.2) and the co
cavity ofφn yield φn(x) > pφn(xn) = p‖φn‖, for x ∈ [p,σ 2(1)]T, wherexn ∈ (p,σ 2(1))T

is the abscissa of the maximum value of the solution,φn(x). To see this, we conside
the line segment joining(0,0) and(xn,φn(xn)), given by�(x) = ‖φn‖x/xn, x ∈ [0, xn]T.
Thus,�(p) = ‖φn‖p/xn > p‖φn‖. Furthermore,�(p) < φn(p) andφn(x) � φn(p), x ∈
[p,σ 2(1)]T. Thus

φn(x) � φn(p) > �(p) > p‖φn‖, x ∈ [
p,σ 2(1)

]
T
, (2.2)

which implies

φn(x) > pφn(xn), x ∈ [
p,σ 2(1)

]
T
,

and hence the claim.
Let θ = pφn0(xn0) = p‖φn0‖. Then the line segment joining(0,0) with (p, θ) and the

line segment joining(p,φ) with (1, θ) must lie under the graph ofφn for n � n0. That is,
φn(x) � gθ (x) for x ∈ [0, σ 2(1)]T. Thus, forn � n0 andx ∈ (0, σ 2(1)], we have

φn(x) = T φn(x) =
σ2(1)∫
0

G(x, t)f
(
t, φn(t)

)
�t �

σ2(1)∫
0

G(x, t)f
(
t, gθ (t)

)
�t < ∞.

But this contradicts the assumption that‖φn‖ → ∞ as n → ∞. Hence, there exists a
S > 0 such that‖φ‖ � S for any solutionφ ∈ D of (1.1), (1.2). �
Lemma 2.3. If f satisfies(A1)–(A4), then there exists anR > 0 such that‖φ‖ � R for
any solutionφ ∈ D of (1.1), (1.2).
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Proof. For the sake of contradiction, supposeφn(x) → 0 uniformly on [0, σ 2(1)]T as
n → ∞. Let

m = inf
{
G(x, t): (x, t) ∈ [

p,σ 2(1)
]
T

× [
p,σ(1)

]
T

}
> 0.

From (A2), we see that limy→0+ f (x, y) = ∞ uniformly on compact subsets of(0, σ 2(1)]T.
Hence, there exists someδ > 0 such that forx ∈ [p,σ 2(1)]T and 0< y < δ, we have
f (x, y) � 1/(m(1− p)). On the other hand, there exists ann0 ∈ N such thatn � n0 im-
plies 0< φn(x) < δ/2, for x ∈ (0, σ 2(1)]T. So, forx ∈ (p,σ 2(1)]T andn � n0,

φn(x) = T φn(x) =
σ2(1)∫
0

G(x, t)f
(
t, φn(t)

)
�t � m

σ2(1)∫
p

f
(
t, φn(t)

)
�t

> m

σ2(1)∫
p

f (t, δ/2)�t � m

σ2(1)∫
p

1

m(1− p)
�t = 1.

But this contradicts the assumption that‖φn‖ → 0 uniformly on[0, σ 2(1)]T asn → ∞.
Hence, there exists anR > 0 such thatR � ‖φ‖. �

We now present the main result of the paper.

Theorem 2.3. If f satisfies(A1)–(A4), then(1.1), (1.2)has at least one positive solution

Proof. For eachn ∈ N, let ψn(x) = T (n), wheren is the constant function of that valu
on [0, σ 2(1)]T. In particular,

ψn(x) =
σ2(1)∫
0

G(x, t)f (t, n)�t.

Sincef is decreasing in its second component andT is also a decreasing mapping,

ψn+1(x) � ψn(x), ψn(x) > 0, x ∈ (
0, σ 2(1)

]
T
. (2.3)

By (A2), ψn(x) → 0 uniformly on[0, σ 2(1)]T asn → ∞. Definefn : (0,1]T ×[0,∞)T →
(0,∞) by

fn(x, t) = f
(
x,max

{
t,ψn(x)

})
.

Note thatfn has effectively “removed the singularity” inf aty = 0. Moreover, for(x, t) ∈
(0,1]T × (0,∞)T, we seefn(x, t) � f (x, t), and in particular,

fn(x, t) = f
(
x,max

{
t,ψn(x)

})
� f

(
x,ψn(x)

)
.

Next, define a sequence of operatorsTn :K →K via

Tnφ(x) :=
σ2(1)∫

G(x, t)fn

(
t, φ(t)

)
�t, φ ∈K, x ∈ (

0, σ 2(1)
]
T
.

0
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fact a compact mapping onK. Furthermore,Tn(0) � 0 andT 2

n (0) � 0. By Theorem 2.2, fo
eachn ∈ N, there existsφn ∈K such thatTnφn(x) = φn(x) for x ∈ [0, σ 2(1)]T. Hence, for
eachn ∈ N, φn satisfies the boundary conditions of the problem. In addition, for eachφn,

Tnφn(x) =
σ2(1)∫
0

G(x, t)fn

(
t, φn(t)

)
�t =

σ2(1)∫
0

G(x, t)f
(
t,max

{
φn(t),ψn(t)

})
�t

�
σ2(1)∫
0

G(x, t)f
(
t,ψn(t)

)
�t = T ψn(x),

which implies

φn(x) = Tnφn(x) � T ψn(x), x ∈ [
0, σ 2(1)

]
T
, n ∈ N. (2.4)

Arguing as in Lemma 2.2 and using (2.4), it is fairly straightforward to show that t
exists anS > 0 such that‖φn‖ � S for all n ∈ N. Similarly, we can follow the argument o
Lemma 2.3 to show that there exists anR > 0 such that‖φn‖ > R for all n ∈ N.

For θ = pR, (2.2) and the concavity ofφn(x) for x ∈ [0, σ 2(1)]T yields

gθ (x) � φn(x), x ∈ [
0, σ 2(1)

]
T
. (2.5)

Therefore, the sequence{φn}∞n=1 is contained in the order interval〈gθ , S〉, whereS is the
constant function of that value on[0, σ 2(1)]T; that is,{φn}∞n=1 ⊂ D. SinceT :D → D is a
compact mapping,T φn → φ∗ asn → ∞ for someφ∗ ∈ D.

To conclude the proof of this theorem, we need to show that

lim
n→∞

(
T φn(x) − φn(x)

) = 0.

To that end, fixθ = pR, and letε > 0 be given. The latter part of Assumption (A1) perm
us to chooseδ ∈ (0, σ 2(1))T such that

δ∫
0

f
(
t, gθ (t)

)
�t <

ε

2M
,

where

M = max
{
G(x, t): (x, t) ∈ [

0, σ 2(1)
]
T

× [
0, σ (1)

]
T

}
.

By (2.3) and (2.5), there exists ann0 ∈ N such that forn � n0,

ψn(t) � gθ (t) � φn(t), t ∈ [
δ, σ 2(1)

]
T
.

Thus, fort ∈ [δ, σ 2(1)]T,

fn

(
t, φn(t)

) = f
(
t,max

{
φn(t),ψn(t)

}) = f
(
t, φn(t)

)
,

and forx ∈ [0, σ 2(1)]T,
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T φn(x) − φn(x) = T φn(x) − Tnφn(x)

=
[ δ∫

0

G(x, t)f
(
t, φn(t)

)
�t +

σ2(1)∫
δ

G(x, t)f
(
t, φn(t)

)
�t

]

−
[ δ∫

0

G(x, t)fn

(
t, φn(t)

)
�t +

σ2(1)∫
δ

G(x, t)fn

(
t, φn(t)

)
�t

]

=
δ∫

0

G(x, t)f
(
t, φn(t)

)
�t −

δ∫
0

G(x, t)fn

(
t, φn(t)

)
�t.

Thus, forx ∈ [0, σ 2(1)]T,

∣∣T φn(x) − φn(x)
∣∣ � M

[ δ∫
0

f
(
t, φn(t)

)
�t +

δ∫
0

f
(
t,max

{
φn(t),ψn(t)

})
�t

]

� M

[ δ∫
0

f
(
t, φn(t)

)
�t +

δ∫
0

f
(
t, φn(t)

)
�t

]

� 2M

δ∫
0

f
(
t, gθ (t)

)
�t < ε.

Sincex ∈ [0, σ 2(1)]T was arbitrary, we conclude that‖T φn − φn‖ < ε for all n � n0.
Hence,φ∗ ∈ 〈gθ , S〉 and forx ∈ [0, σ 2(1)]T,

T φ∗(x) = T
(

lim
n→∞ T φn(x)

)
= T

(
lim

n→∞ φn(x)
)

= lim
n→∞ T φn(x) = φ∗(x). �

3. The nabla–nabla problem

We now extend the existence results of the previous section to time scale boundar
problems of the form

y∇∇ + f (x, y) = 0, x ∈ (0,1]T, (3.1)

y(ρ2(0)) = 0, y(p) = y(1), (3.2)

wheref (x, y) is singular aty = 0, and possibly atx = 0 andy = ∞.

“Nabla–nabla” problems such as (3.1) are dealt with quite extensively in [8] as
as [6]. The paper by Eloe, Sheng, and Henderson [18] is a very interesting study
numerical aspects of these equations.

Throughout this section, we make the following assumptions:

(B1) p ∈ (0,1)T is arbitrary but fixed; 0,1∈ T with 0 right dense.
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(B2) f : (0,1]T × (0,∞)T → (0,∞) is decreasing iny for everyx ∈ (0,1]T.
(B3) limy→0+ f (x, y) = ∞ and limy→∞ f (x, y) = 0, uniformly on compact subsets

(ρ2(0),1]T.
(B4) 0<

∫ 1
ρ2(0) f (x, gθ (x))∇x < ∞, for all θ > 0 wheregθ is defined in (3.3).

We seek positive solutions,y : [ρ2(0),1]T → R
+, satisfying (3.1), (3.2). We note th

positive solutions of (3.1), (3.2) are also concave on[ρ2(0),1]T. Consider the Banac
spaceB = C[ρ2(0),1]T with the norm

‖u‖ = sup
x∈[ρ2(0),1]T

∣∣u(x)
∣∣.

Define the normal cone,K ⊂ B, by

K := {
u ∈ B | u(x) � 0 on

[
ρ2(0),1

]
T

}
.

Moreover, define thetent functiong1 : [ρ2(0),1]T → [0,∞) by

g1(x) =
{

x, if ρ2(0) � x � p,
p, if σ(p) � x � 1,

and forθ > 0, let

gθ (x) = θ · g1. (3.3)

We observe that for each positive (and concave) solution,y(x), of (3.1), (3.2), there exist
someθ > 0 such thatgθ (x) � y(x) for all x ∈ [ρ2(0),1]T.

We will apply Theorem 2.2 to operators whose kernel is the Green’s functio
−y∇∇ = 0 and satisfies (3.2). This Green’s function,G : [ρ2(0),1]T × [ρ(0),1]T →
[0,∞), is given by

G(x, t) =




x − ρ2(0), x � t � p,
ρ(t) − ρ2(0), σ (t) � x andt � p,
(x−ρ2(0))(1−ρ(t))

1−p
, σ (p) � t andx � t ,

ρ(t) − x + (x−ρ2(0))(1−ρ(t))
1−p

, σ (p) � t � σ(t) � x.

Note thatG(x, t) > 0 for (x, t) ∈ (ρ2(0),1)T × (ρ(0),1)T.
DefineD ⊂K by

D := {
φ ∈K | ∃θ(φ) > 0 such thatφ(x) � gθ (x), x ∈ [

ρ2(0),1
]
T

}
,

and the integral operatorT :D →K by

T u(x) :=
1∫

ρ2(0)

G(x, t)f
(
t, u(t)

)∇t .

Using arguments very similar to the previous section, we obtain the analogou
lemmas establishing a priori upper and lower bounds on solutions as well as an ex
theorem.
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Lemma 3.1. If f satisfies(B1)–(B4), then there exists anS > 0 such that‖φ‖ � S for any
solutionφ ∈ D of (3.1), (3.2).

Lemma 3.2. If f satisfies(B1)–(B4), then there exists anR > 0 such that‖φ‖ � R for any
solutionφ ∈ D of (3.1), (3.2).

Theorem 3.1. If f satisfies(B1)–(B4), then(3.1), (3.2)has at least one positive solution

4. The mixed delta–nabla and nabla–delta problems

Lastly, we extend these existence results to “mixed” time scales boundary value
lems of the form

y�∇ + f (x, y) = 0, x ∈ (0,1]T, (4.1)

y
(
ρ(0)

) = 0, y(p) = y
(
σ(1)

)
, (4.2)

and

y∇� + f (x, y) = 0, x ∈ (0,1]T, (4.3)

y
(
ρ(0)

) = 0, y(p) = y
(
σ(1)

)
, (4.4)

wheref (x, y) is singular aty = 0, and possibly atx = 0 andy = ∞.
“Delta–nabla” and “nabla–delta” problems such as (4.1), (4.3) are often referred to

mixed time scale boundary value problems. Various aspects of mixed problems hav
investigated in the literature, such as Green’s functions [9,11], the existence of m
positive solutions [5], and the quasilinearization method [10]. Again, [18] is an exce
article on the numerical aspects of mixed time scales problems.

Once again, we make the following assumptions:

(C1) p ∈ (0,1)T is arbitrary but fixed; 0,1∈ T with 0 right dense.
(C2) f : (0,1]T × (0,∞)T → (0,∞) is decreasing iny for everyx ∈ (0,1]T.
(C3) limy→0+ f (x, y) = ∞ and limy→∞ f (x, y) = 0, uniformly on compact subsets o

(ρ(0), σ (1)]T.
(C4a) 0<

∫ σ(1)

ρ(0)
f (x, gθ (x))�x < ∞, for all θ > 0 for (4.1), (4.2) wheregθ is defined in

(4.5).
(C4b) 0<

∫ σ(1)

ρ(0) f (x, gθ (x))∇x < ∞, for all θ > 0 for (4.3), (4.4) wheregθ is defined in
(4.5).

We seek positive solutions,y : [ρ(0), σ (1)]T → R
+, satisfying (4.1), (4.2) or (4.3)

(4.4), respectively. Positive solutions of (4.1), (4.2) or (4.3), (4.4) are concav
[ρ(0), σ (1)]T. Consider the Banach spaceB = C[ρ(0), σ (1)]T for (4.1) and B =
C[ρ(0), σ (1)]T for (4.3), each with the associated norm

‖u‖ = sup
∣∣u(x)

∣∣.

x∈[ρ(0),σ (1)]T
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Define the normal cone,K ⊂ B, by

K := {
u ∈ B | u(x) � 0 on

[
ρ(0), σ (1)

]
T

}
.

Moreover, define thetent functiong1 : [ρ(0), σ (1)]T → [0,∞) by

g1(x) =
{

x, if ρ(0) � x � p,
p, if σ(p) � x � σ(1),

and forθ > 0, let

gθ (x) = θ · g1. (4.5)

We observe that for each positive (and concave) solution,y(x), of (4.1), (4.2) or (4.3),
(4.4), there exists someθ > 0 such thatgθ (x) � y(x) for all x ∈ [ρ(0), σ (1)]T.

We will apply Theorem 2.2 to operators whose kernel is the simultaneous Green’s fun
tion for −y�∇ = 0 and−y∇� = 0 which satisfies (4.2) or (4.4), respectively. This Gree
function,G : [ρ(0), σ (1)]T × [0,1]T → [0,∞), is given by

G(x, t) =




x − ρ(0), x � t � p,
t − ρ(0), σ (t) � x andt � p,
(x−ρ(0))(σ (1)−t )

σ (1)−p
, σ (p) � t andx � t ,

t − x + (x−ρ(0))(σ (1)−t )
σ (1)−p

, σ (p) � t � σ(t) � x.

Note thatG(x, t) > 0 for (x, t) ∈ (ρ(0), σ (1))T × (0,1)T.
DefineD ⊂K by

D := {
φ ∈K | ∃θ(φ) > 0 such thatφ(x) � gθ (x), x ∈ [

ρ(0), σ (1)
]
T

}
,

and the integral operatorsT :D → K via

T u(x) :=
σ(1)∫

ρ(0)

G(x, t)f
(
t, u(t)

)
�t, for (4.1), (4.2),

T u(x) :=
σ(1)∫

ρ(0)

G(x, t)f
(
t, u(t)

)∇t, for (4.3), (4.4).

Using arguments very similar to Section 2, we obtain the analogous two lemmas
lishing a priori upper and lower bounds on solutions as well as an existence theorem

Lemma 4.1. If f satisfies(C1)–(C4a,b), then there exists anS > 0 such that‖φ‖ � S for
any solutionφ ∈ D of (4.1)), (4.2)and (4.3), (4.4), respectively.

Lemma 4.2. If f satisfies(C1)–(C4a,b), then there exists anR > 0 such that‖φ‖ � R for
any solutionφ ∈ D of (4.1), (4.2)and(4.3), (4.4), respectively.

Theorem 4.1. If f satisfies(C1)–(C4a,b), then(4.1), (4.2)and (4.3), (4.4)have at least
one positive solution, respectively.
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Appendix A. Time scales background

Since Stefan Hilger’s 1988 PhD dissertation [26] which introduced analysis on
scales, there have been many publications relating difference equations with diffe
equations. A result for a dynamic equation contains simultaneously a corresponding res
for a differential equation, one for a difference equation, as well as results for othe
namic equations in arbitrary time scales. The upshot here isnot to reproduce blindly the
vast body of similar theorems available for discrete and continuous dynamical system
rather to highlight both the similarities and (more often the case) the manifold differ
in the two theories. Time scales theory presents us with the tools necessary to und
and explain the mathematical structure underpinning the theories of discrete and c
ous dynamical systems and allows us to connect them. That is certainly the goal w
work. In fact, the potential impact of dynamic equations on time scales in applicatio
showcased in a recent cover story article inNew Scientistmagazine [31].

The following definitions and theorems (see Table 1), as well as a general introd
to the theory of dynamic equations on time scales, can be found in the excellent t
Bohner and Peterson [14].

A time scaleT is any closed subset ofR. We define the forward and backward jum
operators byσ(t) = inf{s ∈ T: s > t} and ρ(t) = sup{s ∈ T: s < t}, respectively. An el-
ementt ∈ T is left-dense, right-dense, left-scattered, right-scattered ifρ(t) = t , σ(t) = t ,
ρ(t) < t , σ(t) > t , respectively. Also, inf∅ := supT and sup∅ := inf T. If T has a right-
scattered minimumm, thenTκ = T − {m}, otherwiseTκ = T If T has a left-scattere
maximumM, then T

κ = T − {M}, otherwiseT
κ = T. The distance from an eleme

t ∈ T to its successor is called thegraininessof t and is denoted byµ(t) = σ(t) − t .

Forf :T → R andt ∈ T
κ , definef �(t), thedelta derivativeof f (t), as the number (whe

it exists), with the property that, for anyε > 0, there exists a neighborhoodU of t such that∣∣[f (
σ(t)

) − f (s)
] − f �(t)

[
σ(t) − s

]∣∣ � ε
∣∣σ(t) − s

∣∣, ∀s ∈ U.

Note that the delta derivative is the usual derivative from calculus whenT = R, but the
delta derivative is the forward difference whenT = Z. However, much more general tim
scales are possible.

A functionf :T → R is right dense continuous(denotedf ∈ Crd) if it is continuous at
every right dense pointt ∈ T, and its left hand limits exist at each left dense pointt ∈ T.

Table 1
Time scales: a generalization of discrete and continuous dynamics

T = R T = Z Any T

Continuous (µ = 0) Discrete (µ = 1) Hybrid (µ = µ(t))
ODE forward difference equation dynamic equation
f ′(t) �f (t) = f (t + 1) − f (t) f �(t) = limh→µ(t) (f (t + h) − f (t))/h

(k f )′ = k · f ′ �(k f ) = k�f (k f )� = k · f �

(f + g)′ = f ′ + g′ �(f + g) = �f + �g (f + g)� = f � + g�

(fg)′ = fg′ + f ′g �(fg) = f �g + �f · g(t + 1) (fg)� = f · g� + f � · gσ

(f/g)′ = f ′g−fg′
g2 �(f/g) = �f ·g−f �g

g·g(t+1)
(f/g)� = f �g−f ·g�

g·gσ∫ b
a f (t) dt

∑b−1
t=a f (t), a < b

∫ b
a f (t)�t
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We sayf is delta differentiable onTκ providedf �(t) exists for allt ∈ T
κ . The function

f � :Tκ → R is called thedelta derivativeof f on T
κ . Lastly, a functionF :T → R is

called adelta antiderivativeof f :Tκ → R providedF�(t) = f (t) holds for all t ∈ T
κ .

We can then define the (delta) definite integral off by
∫ b

a
f (τ )�τ = F(b) − F(a).

The calculus of nabla derivatives is a generalization of the backward difference operat
on Z to an arbitrary time scale. We refer the reader to Sections 8.3 and 8.4 of [14]
detailed background on nabla derivatives.

A function f :T → R is left dense continuous(denotedf ∈ Cld) if it is continuous at
every left dense pointt ∈ T, and its right hand limits exist at each right dense pointt ∈ T.
We sayf is nabla differentiable onTκ providedf ∇(t) exists for allt ∈ Tκ . The function
f ∇ :Tκ → R is called thenabla derivativeof f on Tκ . Lastly, a functionF :T → R is
called anabla antiderivativeof f :Tκ → R providedF∇(t) = f (t) holds for all t ∈ Tκ .
We can then define the (nabla) definite integral off by

∫ b

a f (τ )∇τ = F(b) − F(a).
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