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Abstract

We prove the existence of a positive solution for the three point boundary value problem on time
scaleT given by

YAR L F(») =0, x€(0,1NT, y0 =0, y(p)=y(0?D),

wherep € (0,1) N T is fixed andf (x, y) is singular aty = 0 and possibly at =0, y = co. We do

so by applying a fixed point theorem due to Gatica, Oliker, and Waltman [J. Differential Equations
79 (1989) 62] for mappings that are decreasing with respect to a cone. We also prove the analogous
existence results for the related dynamic equatioh¥ + f(x, y) =0, y2Y + f(x,y) =0, and

yYA 4 f(x,y) = 0 satisfying similar three point boundary conditions.

0 2004 Elsevier Inc. All rights reserved.
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1. Introduction

We are interested in the existence of a positive solution for the three point boundary
value problem on a time scdlg

YA+ f(x,y) =0, xe€(01]r, (1.1)
y©) =0, y(p)=y(c?D), (1.2)
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where f(x, y) is singular aty = 0, and possibly at =0 andy = co. (An interval sub-
scripted withT is the one intersected wiffi.) We make the following assumptions:

(A1) p e (0,17 is arbitrary but fixed; 01 € T with 0 right dense;

(A2) f:(0,1]T x (0, 00)T — (0, c0) is decreasing iry for everyx € (0, 1];

(A3) lim_ o+ f(x,y) =00 and limy_, o f(x,y) =0, uniformly on compact subsets of
0, 0%(D]r;

(A4) 0< [P f(x, go(x))Ax < oo forall 6 > 0 andgs as defined in (2.1).

To make this work reasonably self-contained we have included the basic definitions from
the theory of time scales in Appendix A.

The seminal paper by Gatica, Oliker, and Waltman [21] in 1989 has had a profound im-
pact on the study of singular boundary value problems for ordinary differential equations
(ODEs). They studied singularities of thgpe in (A2)—(A4) for second order Sturm-—
Louiville problems, and their key result hinged on an application of a particular fixed point
theorem for operators which are decreasirithwespect to a cone. Various authors have
used these techniques to study singular problems of various types. For example, Henderson
and Yin [24,25] as well as Eloe and Henderson [15—-17] have studied right focal, focal, con-
jugate, and multipoint singular boundary value problems for ODEs. Baxley [12], Erbe and
Kong [19], and Fink, Gatica, and Hernandez [20] are also excellent references which make
use of [21]. For completeness, we do note that there are papers which deal with singular
problems of this type without appealing to the results of [21]; for example, see [28].

However, the time scale setting here is much more general since ODEs and finite dif-
ference equations are but special cases ofifmamic equatiomgiven by (1.1). This is a
rapidly expanding area of research; we refer the reader to the excellent introductory text by
Bohner and Peterson [14] as well as their recent research monograph [13]. Problems such
as (1.1) are dealt with quite extensively in [7] as well as in [1,13,14]. The paper by Eloe,
Sheng, and Henderson [18] is a very interesting study in the numerical aspects of these
equations. We note that this is the first work (to our knowledge) that deals with singular
boundary value problems in a general time scales setting.

In particular, three point boundaconditions such as (1.2) have been investigated for
the continuous case (ODESs), the discrete cases (difference equations), and the general time
scales case by Anderson [3-5], Gupta [22,23], and Ma [29], to name a few. Very recently,
Singh [30] established the existence of a positive solution to (1.1), (1.2) in the special case
T =R by using the methods of [21]; certainly [30] is the motivation for this paper.

We have organized the paper as follows. In Section 2, we start with some preliminary
definitions and results from the study afrees in Banach spaces and state an important
fixed point theorem from [21]. We formulate two lemmas which establish a priori upper
and lower bounds on solutions of (1.1), (1.2). We then state and prove our main exis-
tence theorem. In Section 3, we consider the so-called “nabla—nabla” problem analogous
to (1.1) satisfying similar boundary conditis and singularity assumptions on the nonho-
mogeneity. In Section 4, we consider the “mixed” dynamic equations of “delta—nabla” and
“nabla—delta” type with boundary conditions sian to (1.2). The Green'’s functions for all
four problems here are new. For the convenience of the reader, we conclude with a very
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brief appendix which should serve as a time scales primer for those unfamiliar with the
area.

2. Thedelta—delta problem

We begin by giving definitions and some properties of cones in a Banach space. For
references, see Krasnosel'skii [27] and Amann [2].

Let B be a real Banach space. A nonempty/set B is called aconeif the following
conditions are satisfied:

(a) the seiC is closed,;
(b) if u,v e K thenau + Bv € K for all reale, 8 > 0;
(€) u,—u e K implyu=0.

A cone K is normalin B provided there exist8 > 0 such that|e; + e2| > 8, for all
e1,e2 € K with |le1|| = |le2|| = 1. Given a conek a partial order, <, is induced on3
by x <y, for x,y € B if and only if y — x € K. For clarity, we sometimes write < y
(w.r.t. ). If x, y e Bwith x < y, let (x, y) denote thelosed order interval between x and
ygivenby(x,y) ={zeBlx <z y}

The following result due to Krasnosel’skii will be needed later.

Theorem 2.1[27, p. 24].If K C B is a normal cone, then closed order intervals are norm
bounded.

Next we state the fixed point theorem due to Gatica, Oliker, and Waltman [21] which is
instrumental in proving our existence results.

Theorem 2.2 (Gatica—Oliker—Waltman fixed point theorenhpet B be a Banach space,

K C B be anormal cone, anfd C K be such thatif, y € D with x < y, then(x, y) C D.

LetT : D — K be a continuous, decreasing mapping which is compact on any closed order
interval contained inD, and suppose there exists ap € D such thatT2xg is defined
(whereT2xg = T (T'xp)) and Txg, T%xo are order comparable tag. ThenT has a fixed
pointin D provided that either

(i) Txo<xoand T2x0 < Xx0;
(i) xo = Txoandxg < T2xo; or
(iii) The complete sequence of itera{é@’xo}:io is defined and there exists € D such
that Tyg € D with yo < T"xo for all n e N.

We seek positive solutions,: [0, 02(1)]T — R, satisfying (1.1), (1.2). To accomplish
this, we transform (1.1), (1.2) into an integral equation involving the appropriate Green’s
function, and seek fixed points of the underlying integral operator. We will then show that
these fixed points form a sequence of iterates converging to a solution of (1.1), (1.2).
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First, note that positive solutions of (1.1), (1.2) are also concavi®ar?(1)]t. Con-
sider the Banach spacg,= C[0, o2(1)]t, with the norm

lull=sup |u(x)|.
x€[0,62(D)]T

Define the normal coné C B, via
K:={ueB|ux)>00n[0,0%D)]},
and define théent functiongs : [0, 02(1)]T — [0, o) by

x, IfOo<x<p,

g1(0) = {p, if o (p) <x <o?(D).

Finally, for6 > 0, let

go(x)=0"-g1. (2.1)

We observe that for each positive (and concave) solusion), of (1.1), (1.2), there exists
somed > 0 such thagy(x) < y(x) for all x € [0, 02(1)]r.

We will apply Theorem 2.2 to operators whose kernel is the Green’s function for
—yAA = 0 and satisfies (1.2). The Green’s functia®; [0, 02(1)]t x [0, 0 (1)]T —
[0, 00), is given by

X, x<t<p,
o (1), o(t) <xandr < p,
_ 2(1)—
G(x,t) = %)fg)ox, o(p) <tandx <t,
2(1)—
o(t) —x + TGEI - x, o(p) <t <o) <x.

Notice thatG (x, r) > 0 for (x, ) € (0, 02(1))1 x (0, o (1))7.
DefineD c K by
D :={¢ € K|30(¢) > 0 such thatp(x) > go(x), x € [0, 02(1)]T},
and the integral operat@r: D — K by
a2(1)
Tu(x):= / G(x,t) f(t, u(t))At.
0

It suffices to defineD as above, since the singularity fnprecludes us from defining on
all of K. Furthermore, it can easily be verified tifats well-defined. In that direction, note
that forg € D there exist® (¢) > 0 such thaigy (x) < ¢(x) for all x € [0, 02(1)]r. Since
f(x, y) decreases with respectfowe seef (x, ¢ (x)) < f(x, gg(x)) for x € (0, o 2(1)]r.
Thus,

2D 21
0< / G, 1) f(t, (1) At < / G(x, 1) f(t, g0 (1)) A < 0.
0 0

Similarly, 7' is decreasing with respect 10.
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Lemma2.1. ¢ € D is a solution of(1.1), (1.2)if and only ifT ¢ = ¢.

Proof. One direction of the lemma is obviously true. To see the other direction, let

¢ € D. Then(T¢)(x) = 5’2‘1) G, ) f(t, ¢ ()AL, and(TP) A2 (x) = — f(x, p(x)) <O

for x € (0, 1]1. Moreover(T¢)(x) > 0, (T¢$)(0) =0, and(T¢)(p) — (T¢)(1) = 0. Thus,
there exists som@(T ¢) such that(T¢)(x) > go(x), which implies that' ¢ € D. That s,
T:D— D.

We now present two lemmas that are reqdiire order to apply Theorem 2.2. The first
establishes an a priori upper bound on solutions, while the second establishes an a priori
lower bound on solutions.

Lemma 2.2. If f satisfieg(Al)—(A4), then there exists af > 0 such that|¢| < S for any
solutiong € D of (1.1), (1.2)

Proof. For the sake of contradiction, suppose that the conclusion is false. Then there exists
a sequence{,q&n}zil, of solutions to (1.1), (1.2) such tha},(x) > 0 for x € (0, o2(1)1r,
and|| ¢, || < l|¢n+1ll with lim, o ||¢n || = co. Note that for any solutios of (1.1), we have
$22(x) = —f(x,¢(x)) <0 on (0, 1]T; that is,¢ is concave. In particular, the graph of
eachg, is concave. Furthermore, we claim thiae boundary conditions (1.2) and the con-
cavity of¢, yield ¢, (x) > p@y (xn) = plign |, for x € [p, a%(1)]r, wherex, € (p,o?(1)t

is the abscissa of the maximum value of the solutign;x). To see this, we consider

the line segment joiningO, 0) and (x,,, ¢, (x,)), given byl(x) = ||¢, |l x/xn, x € [0, x]T.

Thus, 2(p) = lIgnllp/xn > plignll. Furthermoref(p) < ¢n(p) and,(x) = ¢n(p), x €
[p,o?(1)]r. Thus

Gn(x) = du(p) > L(p) > plignll,  x €[p, 2]y (2.2)
which implies
bu(x) > pn(xn),  x €[p.o?(D)]y,

and hence the claim.

Let 6 = pdny(x40) = Plidnyll- Then the line segment joinin@, 0) with (p, 6) and the
line segment joinindp, ¢) with (1, ) must lie under the graph @, for n > ng. That is,
Gn(x) = go(x) for x € [0, 2(1)]t. Thus, forn > ng andx € (0, 2(1)], we have

21 21
Ou(x) =T p(x) = / G(x,0) f(r, pu(0)) AL < / G(x, 1) f(t,89(1)) At < oco0.
0 0

But this contradicts the assumption th@at, || — oo asn — oo. Hence, there exists an
S > 0 such that|¢| < S for any solutionp € D of (1.1), (1.2). O

Lemma 2.3. If f satisfiegAl)—(A4), then there exists aR > 0 such that|¢| > R for
any solutionp € D of (1.1), (1.2)
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Proof. For the sake of contradiction, suppagg(x) — O uniformly on [0, c2(1)]r as
n — oo. Let

m= inf{G(x, 1): (x,t) € [p,crz(l)]T X [p,cr(l)],ﬂ,} > 0.

From (A2), we see that ligy, o+ f(x, y) = oo uniformly on compact subsets @, a2(D)]r.
Hence, there exists sonde> 0 such that forx € [p, o%(1)]r and O< y < §, we have
f(x,y) >1/(m(1— p)). On the other hand, there exists @f< N such that: > ng im-

plies 0< ¢, (x) < 8/2, forx € (0, 02(1)]1. S0, forx € (p, 02(1)]t andn > no,

o2(1) o2
Ou(x) =T p(x) = / Gx,0) f(t, pu(0)) AL =m / F(r, dn(0)) At
0 P
2D 21

>m / f(t,8/2)At >m / ;Atzl.
; J m(1l—p)

But this contradicts the assumption thiat, || — O uniformly on[0, o2(1)]r asn — oo.
Hence, there exists aR > 0 such thair < ||¢||. O

We now present the main result of the paper.
Theorem 2.3. If f satisfieqAl)—(A4), then(1.1), (1.2)has at least one positive solution.

Proof. For eachw € N, let v,,(x) = T (n), wheren is the constant function of that value
on[0, o2(1)]r. In particular,

o?(1)
Yn(x) = / G(x,t) f(t,n)At.
0
Since is decreasing in its second component d@nid also a decreasing mapping,
Yn1(x) <Yn(x),  ¥u(x) >0, x € (0,6%(D)]; (2.3)

By (A2), ¥, (x) — 0 uniformly on[0, o2(1)]t asn — oco. Define f, : (0, 1]t x [0, co)T —
(0, 00) by

falx, )= f(x, max{r, ¥, (x)}).

Note thatf, has effectively “removed the singularity” ifi at y = 0. Moreover, for(x, t) €
(0, 1] x (0, c0)T, We seef, (x, 1) < f(x,t), and in particular,

fae,0) = f (e, max{e, ¥u (0)}) < f(x, ¥ ().
Next, define a sequence of operatfys K — K via
o?(1)

Tho(x):= / G(x, 1) fu(t, () At, ¢e/€,xe(0,oz(1)]T.
0
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From standard arguments involving thezela—Ascoli Theorem we know that eaghis in

fact a compact mapping dé. FurthermoreT;,(0) > 0 andTnZ(O) > 0.By Theorem 2.2, for
eachn € N, there existg, € K such thatl},¢, (x) = ¢, (x) for x € [0, 02(1)]7. Hence, for
eachn e N, ¢, satisfies the boundary conditions of the problem. In addition, for éach

o2(1) o?(1)

Thn(x) = / G(x, 1) fu(t, pn(D)) AL = / G(x, 1) f(t,max{ea (1), Y (1) }) At
0 0
o2(1)

< / G (e 1) £ (1. ¥ (D) AT = T (),

which implies
O (x) = Ty (x) < T (x), x €[0,6%(D)]y, neN. (2.9

Arguing as in Lemma 2.2 and using (2.4), it is fairly straightforward to show that there
exists anS > 0 such that|¢, || < S for all n € N. Similarly, we can follow the argument of
Lemma 2.3 to show that there exists &n~ 0 such that|¢,, || > R for all n € N.

For® = pR, (2.2) and the concavity af, (x) for x € [0, 02(1)]t yields

go(x) <pn(x), x €[0,0%(D)]y. (2.5)

Therefore, the sequenég, }.° ; is contained in the order intervéd,, S), wheres is the

constant function of that value d0, o2(1)]t; that is,{¢u};24 C D.SinceT :D — Disa
compact mappindl ¢, — ¢* asn — oo for somegp™* € D.
To conclude the proof of this theorem, we need to show that

nleoo(chn (x) = ¢ (x)) =0.

To thatend, fi¥0 = pR, and lete > 0 be given. The latter part of Assumption (A1) permits
us to choosé € (0, o2(1))T such that

5
/f(t,ge(t))At < ﬁ
0

where
M =max{G(x,1): (x,1) €[0,0%(D)]y x [0, 0 (D]}
By (2.3) and (2.5), there exists ag € N such that fomn > ng,
Yn(t) < go() <Pu(0), te[8,0%D)]y
Thus, forr € [8, 02(1)]r,
Sa(t. 0 (@) = f(t.max{ @, (1), Yu()}) = £ (1. ¢u (1)),

and forx € [0, o 2(1) 17,
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T¢n(x) = ¢n(x) =T hp(x) — T1¢pn(x)

B a2(1)
= [/G(x,t)f(t,¢n(t))At+ / G(x,t)f(t,¢n(t))At:|
0 )

B a2(1)
- |:/G(xat)fn(t’¢n(t))At+ / G(xat)fn(t’¢n(t))At:|

0 3
) )
=/G(x,t)f(t,¢n(t))m—/G(x,t)fn(t,qﬁn(t))m
0 0

Thus, forx € [0, 02(1)]r,

|T¢n(x) = n()| < M| | f(t. ()AL +

O\%

F(r,max{én (), ¥ (D }) A }

N
<

S

]
S )

/f(ts¢n(t) At+/f 1, dn())A }
0 0

§2M/f(t,g9(t))At<8.
0

Sincex € [0, 02(1)]T was arbitrary, we conclude thdf' ¢, — ¢, < e for all n > no.
Hence¢* € (gs, S) and forx € [0, o2(1)],

7¢* ) =T ( im T¢,0)) =T ( im $,(0) = Im Tg,(x) =¢*0). O

3. Thenabla—nabla problem

We now extend the existence results of the previous section to time scale boundary value
problems of the form

V4 fx,»=0, xe(1lr, (3.1)

y(p?(0) =0, y(p)=y(), 3.2)

where f (x, y) is singular aty = 0, and possibly at = 0 andy = co.

“Nabla—nabla” problems such as (3.1) are dealt with quite extensively in [8] as well
as [6]. The paper by Eloe, Sheng, and Henderson [18] is a very interesting study in the
numerical aspects of these equations.

Throughout this section, we make the following assumptions:

(B1) p € (0, 1)y is arbitrary but fixed; 01 € T with 0 right dense.
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(B2) f:(0, 1]t x (O, 0c0)T — (0, 00) is decreasing iry for everyx € (0, 1]r.

(B3) limy_,o+ f(x,y) =00 and lim,_, o f(x,y) = 0, uniformly on compact subsets of
(0?(0), 1]T.

(B4) 0< fplz(o) f(x,g0(x))Vx < o0, forall & > 0 wheregy is defined in (3.3).

We seek positive solutions,:[02(0), 1]t — R+, satisfying (3.1), (3.2). We note that
positive solutions of (3.1), (3.2) are also concave[pf(0), 1]t. Consider the Banach
space3 = C[p2(0), 1]t with the norm

lull=sup |u(x)|.
x€[p2(0), 1]

Define the normal conéC C B, by
K= {u eBlu(x)>00n [,02(0), 1]T}.
Moreover, define theent functiong: : [p2(0), 1]T — [0, co) by
_[x 20 <x<p,
£10x) = {p, if o(p) <x <1,
and for6 > 0, let

go(x)=0-g1. (3.3)

We observe that for each positive (and concave) soluior), of (3.1), (3.2), there exists
somed > 0 such thagy (x) < y(x) for all x € [p2(0), 1]7.

We will apply Theorem 2.2 to operators whose kernel is the Green’s function for
—yYV = 0 and satisfies (3.2). This Green’s functio@, [p2(0), 1lT x [p(0), 1]t —
[0, 00), is given by

x — p?(0), x<t<p,
p(t) — p?(0), o(r) <x andr < p,
— 2
Gx,1)=q G=p (cl@;lfp(m’ o(p) <tandx <1,

_p2 _
p(t) —x + B=LEIEW) - 5 (p) <t <o (D) <x

Note thatG (x, t) > 0 for (x, t) € (0%(0), 1) x (p(0), 1)T.
DefineD c K by
D:={¢ € K |30(¢) > 0 such that(x) > go(x), x € [,02(0), 1].}-
and the integral operat@r: D — K by
1
Tu(x):= / G(x, t)f(t, u(t))Vt.
p2(0)

Using arguments very similar to the previous section, we obtain the analogous two
lemmas establishing a priori upper and lower bounds on solutions as well as an existence
theorem.
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Lemma 3.1. If f satisfieg(B1)—(B4), then there exists a6l > 0 such that|¢|| < S for any
solutiong € D of (3.1), (3.2)

Lemma3.2. If f satisfiedB1)—(B4) then there exists aR > 0 such thatl|¢|| > R for any
solutiong € D of (3.1), (3.2)

Theorem 3.1. If f satisfieqB1)—(B4), then(3.1), (3.2)has at least one positive solution.

4. The mixed delta—nabla and nabla—delta problems

Lastly, we extend these existence results to “mixed” time scales boundary value prob-
lems of the form

YAV 4+ f(x,y) =0, xe(01r, (4.1)

y(0(@) =0, y(p)=y(a (D), (4.2)
and

YA+ f(x,y)=0, x€(0 1, (4.3)

y(p(0)=0, y(p)=y(cD), (4.4)

where f (x, y) is singular aty = 0, and possibly at = 0 andy = co.

“Delta—nabla” and “nabla—delta” problemsch as (4.1), (4.3) are often referred to as
mixed time scale boundary value problems. Various aspects of mixed problems have been
investigated in the literature, such as Green’s functions [9,11], the existence of multiple
positive solutions [5], and the quasilinearization method [10]. Again, [18] is an excellent
article on the numerical aspsaf mixed time scales problems.

Once again, we make the following assumptions:

(C1) p € (0, Dt is arbitrary but fixed; 01 € T with O right dense.
(C2) f:(0,1]T x (0, c0)T — (0, c0) is decreasing iry for everyx € (0, 1].
(C3) limy_,o+ f(x,y) =00 and lim,_  f(x,y) =0, uniformly on compact subsets of
(p(0), 0 (D]r.
(C4a) 0< [T f(x, go(x))Ax < oo, forall § > O for (4.1), (4.2) wherey is defined in
4.5

(C4b) 0< [76) f(x. g6(x))Vx < 00, for all ¢ > O for (4.3), (4.4) wherey is defined in
(4.5)

We seek positive solutions;:[p(0), o (1)]r — R™T, satisfying (4.1), (4.2) or (4.3),
(4.4), respectively. Positive solutions of (4.1), (4.2) or (4.3), (4.4) are concave on
[0(0),0(1)]T. Consider the Banach spad® = C[p(0),o(1)]r for (4.1) and B =
Clp(0), o ()] for (4.3), each with the associated norm

lull=  sup  |u(x)|.
x€[p(0),0 (D]
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Define the normal conéC C B, by
K:={ueB|ux)=00n[p0),0(D)]}.
Moreover, define théent functiongs : [0(0), o (1)]T — [0, co) by

_]x ifp@<x<p,
gl(x)‘{p, if o(p) <x <o),

and foré > 0, let

go(x)=10-g1. (4.5)

We observe that for each positive (and concave) solution), of (4.1), (4.2) or (4.3),
(4.4), there exists sonte> 0 such thaky (x) < y(x) forall x € [p(0), o (1)].

We will apply Theorem 2.2 to operators wigdsernel is the simultaneous Green’s func-
tion for —y2V =0 and—y"V2 = 0 which satisfies (4.2) or (4.4), respectively. This Green’s
function,G : [p(0), o ()]t x [0, 1]T — [0, 00), is given by

x — p(0), x<t<p,

1 —p(0), o(t) <xandt < p,
Gx,1)= %fi’;})") o(p) <tandx <1,

t—x 4 2O 5 (p) <t <o) <.

Note thatG (x, ) > 0 for (x, 1) € (0(0), o ()T x (0, D).
DefineD c K by
D:={¢ €K |36(¢) > 0such thatp(x) > gy(x), x € [p(0), o (D]},
and the integral operato#s: D — K via
(1)
Tu(x):= / Gx,0)f(t,u®))Ar, for(4.1), (4.2)
p(0)
(1)
Tu(x):= / Gx,0) f(t,u@®))Ve, for(4.3), (4.4)
p(0)

Using arguments very similar to Section 2, we obtain the analogous two lemmas estab-
lishing a priori upper and lower bounds on solutions as well as an existence theorem.

Lemma 4.1. If f satisfies(C1)—(C4a,b)then there exists afi > 0 such that||¢| < S for
any solutionp € D of (4.1)), (4.2)and (4.3), (4.4) respectively.

Lemma4.2. If f satisfieqC1)—(C4a,b)then there exists aR > 0 such that|¢| > R for
any solutionp € D of (4.1), (4.2)and (4.3), (4.4) respectively.

Theorem 4.1. If f satisfies(C1)—(C4a,b)then(4.1), (4.2)and (4.3), (4.4)have at least
one positive solution, respectively.
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Appendix A. Time scales background

Since Stefan Hilger's 1988 PhD dissertation [26] which introduced analysis on time
scales, there have been many publications relating difference equations with differential
equations. A result for a dynamic equation @ng simultaneously a corresponding result
for a differential equation, one for a difference equation, as well as results for other dy-
namic equations in arbitrary time scales. The upshot hemnetito reproduce blindly the
vast body of similar theorems available for discrete and continuous dynamical systems, but
rather to highlight both the similarities and (more often the case) the manifold differences
in the two theories. Time scales theory presents us with the tools necessary to understand
and explain the mathematical structure underpinning the theories of discrete and continu-
ous dynamical systems and allows us to connect them. That is certainly the goal with this
work. In fact, the potential impact of dynamic equations on time scales in applications is
showcased in a recent cover story articl®iew Scientistnagazine [31].

The following definitions and theorems (see Table 1), as well as a general introduction
to the theory of dynamic equations on time scales, can be found in the excellent text by
Bohner and Peterson [14].

A time scaleT is any closed subset &. We define the forward and backward jump
operators by () =inf{s € T: s >t} and p(t) = sups € T: s < t}, respectively. An el-
ementr € T is left-dense, right-dense, left-scattered, right-scatterpdrif=¢, o () =1,

p(t) <t,o(t) > t, respectively. Also, inf := supT and sup/ :=infT. If T has a right-
scattered minimunm, thenT, = T — {m}, otherwiseT, = T If T has a left-scattered
maximum M, thenT* = T — {M}, otherwiseT* = T. The distance from an element
t € T to its successor is called thgraininessof ¢+ and is denoted by () = o (¢) — .
For f:T — R andr € T¥, definef2 (1), thedelta derivativeof f(¢), as the number (when
it exists), with the property that, for any> 0, there exists a neighborhotdof ¢ such that

I[f(c®) = f&)] = fADO[c@) —s]|<elo@) —s|, VseU.

Note that the delta derivative is the usual derivative from calculus ViherR, but the
delta derivative is the forward difference wh&n= Z. However, much more general time
scales are possible.

A function f: T — R is right dense continuou@enotedf € Cq) if it is continuous at
every right dense pointe T, and its left hand limits exist at each left dense poiatT.

Table 1

Time scales: a generalization of discrete and continuous dynamics

T=R T=2 Any T

Continuous £ = 0) Discrete fr = 1) Hybrid (1 = (1))

ODE forward difference equation dynamic equation

@ Af)=ft+D - f@®) fA(l)=|im1HM(r) (f@+h) = f@®)/h
kf) =k-f Ak ) =kAf kA =k- &

(f+e) =1 +¢ A(f+8) =Af + Ag (f+ot=r2+g
(fe)=red+1r'e A(fe)=fAg+Af-gt+1) (fg>A=f-§A+fAA~g"

(f/g) = L551& A(f/g)=BLEIpe (floh =Ll

[P rayar Sl rw), a<b [P ra ar
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We sayf is delta differentiable ot provided f 2 (¢) exists for allr € T*. The function
f2:T¢ — R is called thedelta derivativeof f on T¥. Lastly, a functionF: T — R is
called adelta antiderivativeof f:T“ — R providedF2(r) = f(t) holds for allz € T.
We can then define the (delta) definite integralfdby fab f(@)At =F() — F(a).

The calculus of nabla derivatives is a gettieetion of the backward difference operator
on Z to an arbitrary time scale. We refer the reader to Sections 8.3 and 8.4 of [14] for a
detailed background on nabla derivatives.

A function f: T — R is left dense continuouslenotedf € Cjq) if it is continuous at
every left dense pointe T, and its right hand limits exist at each right dense poinfT.
We sayf is nabla differentiable off, providedf" (r) exists for allr € T,.. The function
fV:T, — R is called thenabla derivativeof f on T,. Lastly, a functionF: T — R is
called anabla antiderivativeof f:T, — R providedFV () = f(¢) holds for allt € T.
We can then define the (nabla) definite integrafdiy fab f()Vt =F(()— F(a).
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