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Abstract

In this work, we generalize existing ideas of the univariate case of the time scales calculus to the bivariate case.
Formal definitions of partial derivatives and iterated integrals are offered, and bivariate partial differential operators
are examined. In particular, solutions of the homogeneous and nonhomogeneous heat and wave operators are foun
when initial distributions given are in terms of elementary functions by means of the generalized Laplace Transform
for the time scale setting. Finally, the so-termed mixed time scale setting is discussed. Examples are given and
solutions are provided in tabular form.
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1. Introduction and motivation

Throughout this work we assume a working knowledge of time scales calculus and the notation of
time scales calculus. In particular, we assume knowledge of the univariate case of dynamic equations.
For a treatment of the univariate case, fJeand[3] or the Appendix (Section 5). At present, most of
the work done in the time scales calculus has been in the univariate case. The notions of derivative and
integral of a function of one variable are well established, and much of the theory of the continuous
case has been generalized for arbitrary time scales. The ordinary dynamic equation (ODE) has been
studied in depth and such concepts as boundary value problems (BVPS), initial value problems (IVPs),
and differential operators in general are the current focus in the papers being written and published in
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the area. To date two papers, namely Hoffagk¢rand Ahlbrandt and Moriafil], are known that have

been published demonstrating the related ideas to the multivariate case and the study of partial dynamic
equations (PDEs). Even in the discrete case, there is only one text known to be devoted to the study of
partial difference equations, with the number of papers being written on the subject paling in comparison
to its continuous counterpart. To us, this seems appauling because of the potential applications that are
being overlooked. Indeed, in the only known tpiton the subject, Cheng shows that discrete PDEs have
much to offer in the way of applications. For example, he shows that the well known binomial coefficients
are actually solutions of a PDE. He also argues that it is the discrete PDE that governs most population
models that involve portions of the population migrating from one region to another during time periods.
The applications to game theory are also astounding, especially to the mathematical biologist when he
considers the applications of game theory to the mathematical theories of evolution in species.

We believe that one of the most important applications of this work will be to numerical analysis.
Solutions to PDESs on arbitrary time scales in numerical terms amounts to an easy way of studying and
finding solutions of the discretized equations from the continuous case. In particular, we believe that the
most prominent advantages of studying time scales is that they will offer an effective alternative to the
current way of finding solutions on nonuniformly spaced grids by adaptive methods, which often can be
computationally intensive and slower to converge to required levels of accuracy.

2. Multivariable calculus on time scales

This section is devoted to the extension of the existing ideas of the time scales calculus to the multivariate
case. Note that this is partly done in Ahlbrandt and MoftHnand so similar ideas to many of the ones
presented here can be found there. Thus, it is necessary to start with basic definitions. Consider the
productT = T1 x T2 x --- x T,, whereT; is a time scale for all £i<n. Then for anyt € T, with
t=(t1,12,...,t,) fory; € T; for all 1<i <n, define the following:

(i) theforward jump operatow : T — T by

a(t) = (6(t1), a(r2), ..., a(ty)), Wwherea(t;) represents the forward jump operator,0& T; on the
time scaler; for all 1<i <n. Hereafter, the forward jump operator of the time scgldor 1; € T;
will be denoted by (;) := a;(2).

(ii) the backward jump operatop : T — T by
p(1) =(p(t1), p(t2), ..., p(ty)), Wherep(t;) represents the backward jump operator; &f T; on the
time scaleT; for all 1<i <n. Hereafter, the backward jump operator of the time sGal®er ; € T;
will be denoted by (t;) := p; (1).

(iii) the graininess function : T — R" by
u() = (u(t), u(r2), . . ., u(ty)), whereu(z;) represents the graininess functior,of T; on the time
scaleT; for all 1<i <n. Again, from this point on the graininess function of the time sdaléor
t; € T; will be denoted byu(t;) := ; (1).

(V) T"=T] x T§ x --- x Tj.

Having defined the multivariate time scale forward jump operator, the definition can be used to define the
partial 4 derivativeof a function f (t). Before doing this, more notation is presented. From here on, set
foi@t)= f(tr,t2, ..., ti—1,0i(t), tix1, ..., t,), and set

ffO=f(t,to, ..., ti1, s, i1, ..., 1) (1.€. to evaluatef;’ (1), replace; in f(t) by s).
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Definition 1. Let f : T — R be a function and let= (11, 2, ..., #;, ..., t,) € T*. Then definef4i (t)
to be the number (provided it exists) with the property that givenzanQ, there exists a neighborhood
Uofs,withU = (5; — 6, 1; +6) N T; for 6 > 0 such that

ILF7 ) = £ O] = fH Oloi () — sl <eloi(t) — s| forall s € U.

f4iis called thepartial delta derivativeof f att with respect to the variablg.

It is worth noting that this definition of the partial derivative states that to find the partial derivative with
respect ta;, treat the other variables as constants with respegtémd take the usual delta derivative of
f () inthez; variable on the time scal§;. Thus, the definition is just the generalization of its continuous
analog, which follows from the fact that if; = R for all i, then the partial delta derivative is the usual
continuous partial derivative. Likewise,’if; = hZ for all i, then the partial delta derivative is the usual
partial difference operator as given in Chedd. With these observations, it is easy then to see that
f4ii(t) (if this value exists) is found by first taking the partial derivative with respect to obtain
f4i(t), and then taking the partial derivative of this derivative function with respect tibtaining
f4i(t), so thatf4i = (f4)4i. Higher ordemixed partialsare defined and evaluated similarly. The
other notion that will be used is taking the partial derivative of the funcfigr) with respect ta; n
times (i.e. to evaluatg%i-i (t) wherei occursn times). From the discussion about mixed partials above,
it follows that evaluating this derivative is equivalent to evaluatjifg(t), where4! denotes taking the
delta derivative with respect tpon the time scald; ntimes. Mixed partials often occur in a variety of
orders. For example, given a functibof two variables; andz,, we may wish to take partials with respect
to r1first, thenr,, and then with respect tg. The notation for this would then bg?121, We may wish to
take partials with respect tg twice and then once with respect#o The notation for this situation is
not clear from the discussion so far. It would most likely be thought that the notation wogﬂéﬁlaebut
this notation is confusing and unclear because it does not clearly indicate which partial(s) we are taking
twice. Therefore, we will not adopt the simultaneous use of subscripts and superscripts in one derivative
symbol when partials with respect to multiple variables are needed. Instead, a separate derivative symbol
for each partial will be used. Thus, for example, to denote taking the partiabithh respect ta; twice

and then taking the partial with respecto we write f 442 |n this spirit, if we wish to take partials

of f with respect ta; twice, then with respect t, and finally with respect to, again, we would write
434241 Finally, we will need to make use of tieeder of the partials being taken of a function. Define

the order of the partial derivative to be the total number of partials with respect to all variables that are
taken of the function. Thus, for example the orderfdt2! is three since three partials are taken, while
f“ii‘g is of order six since six partials are taken. Before proceeding with the following example, we adopt
a new convention. From this point on, unless otherwise noted, all appropriate regressivity conditions on
the elementary functions will be assumed, and subscripts of elementary functions will be assumed to be
constant with respect to the appropriate variables.

Example 1.
(1) LetT =R x hZ x qZ and setf (11, t, t3) = 1{1315. Then by Example 7, it follows that

230t = 43 2to + h) (13(g% + q + 1)) =8(q® + g + ViS22 + 4h(q? + q + D33,
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(2) Let T =T1 x T2 x T3 x T4, WhereTy, To, T3, and T4 are arbitrary time scales. S¢t(t) =
tes, (3, 0)sin, (14, 0). We wish to computef41234(t), f“fl(t), and f“g(t). To compute f41234(t)
andf“g(t) the derivative o% (z, s) with respect t@ must be known. Bohner and Peterg@hshow
thag[ tthshderlvatlve |$f 1+y(r)ZAT)eZ(t s) for thosez € C satisfying 14 pu(t)z # O for « betweers
andt. Thus

fhsa) = (etz(t3, O)Sinp(t47 0))A234

A34
———— Ates, (13, 0)Sin, (14, 0))
1+ (0t H3( o 2 r

1 o 1 e
(sm,,(m, 0) (1 PRy 2 i, 0) + t2/0 (= PR Atey, (13, O)))
p

1 5 3 1
C0S, (14, 0) <l+,u D2 2(1‘,0)4‘12/0 mAwtz(f& 0))

F43(t) = — pPries (13, 0)sin, (14, 0)

£ = (FA2(t)*

13 1 . 4y
- ((/o 1+ puz(0)iz AT) te,(t3, 0)sin, (14, O))

13 1 42
= — A t t3, 0)sin, (14, 0
(/0 15 150002 f) 1€0,(r) (13, 0)SIN, (14, 0)

13 1 2
+ — A1) hes(t3,0)Sin, (14,0
(fo o >112<3 )sin (14, 0)

13 1 A2
=11SiN, (12, 0) | €5, (13, 0 — | Az
191Ny (14, O | €020 (3 )fo <1+M3(T)tz>

13 1 ’
. 1
+ e, (13, )(/0 1+ pz(0)e2 T) i|

& —uz(7) Ac
0 L+ uz(t2)(1+ pz(r)oz2(t))

13 1 2
0 — A
+ e, (13, )(/0 15 150002 r) }

Note that in the computations above, the product rule, the quotient rule, the Fundamental Theorem
of Calculus, and Lebesgue’s Dominated Convergence Theorem were used in certain steps. Note tha
the Dominated Convergence is applicable in this case as the integral is a univariate integral.

13

=11Siny (14, 0) [egz<z)(t3, 0)

The preceding discussion and the example itself serve to show that although partials on time scales art
similar to the continuous case, in general the concept is much more complicated for arbitrary time scales.

The next point of concern for the multivariate case is the continuity of functionsl ket x T2 x

- x T, whereT; is a time scale for all £i <n. Recall that a time scale is given the topology that it
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inherits as a subset &f in the standard topology. Thus, giving the spdce T1 x T2 x --- x T, the
product topology or the subspace topoldginherits as a subspace ®f is equivalent, as is well known
from point-set topology.

Next, the bivariatéterated integralis presented.

Definition 2. Denote all partitions of the intervay, b1] by 21(a1, b1). 21,(a1, b1) is the set of all
P1 € 21(a1, b1) such that for every > 0 and for eachi € {1, 2, ..., n} either

i —t;i—1<96
or
ti —ti_1>0 andp(t;) =1 _1.

(This of course means thad is given bya =tg<t1 <---<t, = b.) P2(az, bp) and Zy,(ay, bp) are
defined similarly.

Definition 3. Let f be a bounded function on the rectangular redien b1] x [a2, b2] as a subset
of T1 x Tp, and letP; € 21(a1, b1), P2 € P2(az, by) be given byay =rg<1<---<t, = by and
az = xo <Xx1 <---<Xxp = by, respectively. In each intervéd; _1, ;) and[x;_1, x;) with 1<i<n and
1< j <m, choose arbitrary point§ andy; and form the double sum

n

S=Y"N" f&Gnp — -y — xj-1).
j=1

i=1

Then, just as in the univariate caseis a Riemann4-sumof f corresponding to the partition®; <
21(a1, b1) and P2 € 2»(az, bo). fis Riemann integrablen [a1, b1] x [az, b2] if there exists a numbér
with the property that for alt > 0 there exist$ > 0 such that

IS —1I|<e

for every Riemanmd-sum S of f corresponding to any; € 21,(a1, b1) and P, € #,(az, bo) and
independent of the choice 6f € [t;_1, t;) andnj € [xj_1,x;) for 1<i<n and 1< j <m. The numbet
is called thaterated Riemannt integral of f on the regiorias, b1] x [az, b2] and is denoted by

by pby
= / f (11, 12) 4142,
az al
whereA; denotes integration with respectrioand A, denotes integration with respecto

Note that with the definition above, in effect what we are doing is the same idea as for the partial
derivative: hold one variable constant and integrate with respect to the second variable. This is why the
double integral given above is called the iterated integral, as two univariate integrals are evaluated to obtain
the double integral. The one thing that may not be clear in the definition is the chaidewthe two
partitions. This can be clarified by understanding the double integral as two iterated single integrals, since
for the double integral to exist, both univariate integrals must exist. Thus, there ekjstemesponding
to the integral with respect tq that satisfies the First Cauchy Criterion for integrability in the univariate
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case, and likewise, there existgacorresponding to the integral with respectiatisfying the same
criterion in the univariate case. Thus, if both univariate integrals exist, then the double integral exists by
choosing =min{d1, d2}. Next, note that to change the order of integration, one simply changes the order
of the summation. Thus, to compute

b1 pb2
1 2/ f(t1, t2) 4241
a

1 az

we just compute the double sum

S=Y 3" FEnp — -0 (xj — xj-1).

i=1 j=1

It also worth noting that the definition above can easily be extended to-thaensional case in a

very obvious way. Iterated univariate integrals allow for the theory from the univariate case, such as the
Fundamental Theorem of Calculus, to extend quite easily. We now state two of these theorems without
proofs as their proofs follow by holding one variable constant and then integrating with respect to the
other variable.

Theorem 1. Every bivariate continuous function f day, b1] x [az, b2] is 4-integrable

Theorem 2 (Bivariate Fundamental Theorem of Calculud.et g(71, £2) be continuous ofias, b1] x
laz, b2] and the single and mixed-partials exist onfay, b1) x [az, bo). If g412 is A-integrable on
la1, b1] x [a2, b2], then

by b1
/ / §M12(11, 1) A142 = g (b1, bp) — g(a1, az).
a ai

There is one last point that should be mentioned before moving on. It is possible to thinkif] x
la2, b>] as a measurable subsetR#, and in so doing, we consider measurable functions, in which case
the Lebesgue integral is needed. Just as in the continuous case, the extension of the univariate case
the multivariate case is relatively simple since the measure theory allows the extension in the regular
fashion. Thus, just as in the univariate case, all of the standard theorems of Lebesgue theory carry ovel
to the generalized time scales setting (in particular, the theorems hold for the iterated integrals, which is
the main focus here).

Lebesgue theory also allows the introduction of the multivamaggoperintegral. Particularly, Lebesgue
theory allows for successful evaluation of the improper integral of the first kind given by

o0
/ ft1, 12) A1
0
by considering the measurable §&too) and the measurable functigi(r, 7).

Example 2. Suppose that the value of the double integral

8 ,5
/ / (211 + 5)(7t22)A1A2
2 JO
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for Ty = 57, and T, = 27 U {0} is needed. Then, using Example 1 and the Fundamental Theorem of
Calculus, it follows that

8 5 8 5
/ / 211+ 5)(T1D) Ay = / ) ( / <2r1+5)41) A
2 0
/ (7f2) 7 s g) (fg i g) <f12

= (512— 8)(25— 0) = 12600.
Now that the necessary multivariable calculus has been established, partial dynamic equations and
operators can be discussed. The following definition is similar to the one offered by (jeog the
corresponding discrete case.

Definition 4. A 4-partial dynamic equatiori4-PDE) in the two independent variablasandz, on the
time scalesT1 and T, respectively, is a differential equation of the form

nep

n n noj n—1 n—1
F(uAl,uA MA AZ , Al AZ,MAJ-AZ

e u’tul? u) = g(t, ).
The equation is said to bmear if F(x1, ..., x;,) is linear, i.e. the equation

F(oax1 + By1, ..., oxy + Byn) = aF (x1, ..., X)) + BF(y1, ..., yn)

holds for all«, p € R. The A-PDE given above isomogeneous g(z1, t2) = 0 and isnonhomogeneous
otherwise. The equation hasderm, wherem is the highest order partial derivative taken with nonzero
coefficient inF. The functionf (r1, r2) € C"(T1 x T2) is asolutionof the 4-PDE if the first equation
above is satisfied, i.€f.js a solution if

n n n—1 n—1
F(f, fh2, pin "2 gMdy =0l £ 206y = o (1, 1),

Note that in the definition abové, was given in functional form. It is easy to see tRatan also be
thought of as an operator, defined as follows: C"*(T1 x T2) — C(T1 x T2) as given in Definition 4.
For our purposes, we will mostly be concerned viitheing a linear operator. The advantage of thinking
of F as an operator is immediately seen in the following theorems:

Theorem 3 (Principle of Superposition for PDEs Let F be a linear operatgrand be as defined in
Definition4. If u1, us, ..., u, are solutions ofFu = 0, then so ist = ciu1 + couz + - - - + c,u,,, where
c1,c2,...,c, € Rare arbitrary constants

Theorem 4. If F is a linear operator and iff (¢1, t2) is a solution ofFu = g, with F and g as defined in
Definition4, andus, us, ..., u, are solutions toFu = 0, thenu = ciuy + cou2 + - - - + cou, + f with
c1,¢2,...,c, € RisasolutiontoFu = g.

Note that the proofs have been suppressed for brevity’s sake. Hereafter, the nofadiuh. , will
denote thdhomogeneouandparticular solutions ofFu = g, respectively. Thus, just as in the continuous
caseyu, represents the homogeneous solution found by sol¥img= 0 andu , represents the particular
solution found in solvingFu = g. These ideas show that linear PDEs on arbitrary time scales are quite
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similar to the continuous case. To find solutions of a linear PDE of the foiima= g, a solution of the
corresponding homogeneous PDE must be found, and then a particular solution must be found. We will
see later, however, that there are some complications in general, even for the linear case.

Before moving on to examining solutions of certain operators, it will first be necessary to introduce
the 4-Laplace Transform for the bivariate case.

Definition 5. Let 0 € Tq, supT; = oo and#; € T1. The A-Laplace Transform of the functiofi(z1, z2)
(for f € C"(T1 x T2)) with respect tay is given by

L{fNz, 1) = F(z, tz)z/o €3, (11, 0) f (11, 12) A1

The 4-Laplace Transform dfwith respect tas is defined similarly as long as, has the same form as
T1 does as given in the definition. Note that in the bivariate case, the Laplace Transform is an (improper)
iterated integral of;,. This fact becomes useful because Integration by Parts can be used to develop
properties for the bivariate case that are similar to their univariate counterparts. The properties that follow
are proven in Bohner and Peterd@j for the univariate case, and since the proofs are similar for the
bivariate case, we omit them here.

Theorem 5. Assumef : T1 x T — C is such thatf41 is continuousThen
LUz 1) = 2F (2, 12) — f(O, 12)
for those regressive € C (with respect taq) satisfying

zllinoo{f(tl’ )eo(t1,0)} =0.

Theorem 6. Assumef : T1 x T2 — Cis such thatf“il is continuous forali =1,2,...,n. Then

LU @ =" Fat2) = 7 (0.1) — 210, 1) - — (0L 12)
for those regressive € C (with respect taq) satisfying

lim {f(t1, t2)ec;(t1,0)} = 0.
11— 00
Theorem 7. Assumef : T1 x T2 — C is such thatf“é is continuous forali =1, 2,...,n. Then
L{f2)(z, 1) = F*2(z, 1p).
Proof.

LU 1) = /o F2(11, 12)e (11, 0) A1

% &
= (/o [, 12)ed, (11, O)Al)

= (L{f (11, 2D (2, 1) = F*(2, 1)
where the second statement follows from the Lebesgue Dominated Convergence Theorem.
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3. Partial differential operators

We are now in a position where we can examine solutions of PDEs. Focus here will first be placed
on the generalizations of solutions to two of the major operators from the continuous and discrete cases:
namely the heat and wave operators. Before considering the first of these, distinction must be made
between the types of problems that will be encountered in working with PDEs. First, theratiaie
value problemgIVPs), in which initial values for a function and its derivatives are given. Second, there
areinitial boundary value problem@BVPs), in which initial values and boundary values are specified.
Third, there areboundary value problem@VPs) in which only boundary conditions or values are
specified. We will examine both homogeneous and nonhomogeneous operators with both homogeneous
and nonhomogeneous boundary conditions. As the technique that will be used is the Laplace Transform
which requires the use of initial values, BVPs such as Laplace’s equation in its usual form will not be
considered in this work.

3.1. The homogeneous heat operator

The homogeneoudeat Equatioron T = T1 x T» in one (spatial) dimension has the functional form

wherec € R is constant. It is easy to see that this is a second order I E. If one prefers operator
notation, then define the operatllr : C3(Ty x To) — C(T1 x T2) by Hu = u?t — 2u’3 and so a
solution to Hu = 0 is needed. For purposes of finding at least one solution to this PDE by using the
Laplace Transform, we may either impose initial values of a combination of initial values farand
boundary conditions for the function. First, consider imposing an initial value with respect ta

(note that only one is needed since the equation is first ordgy &nd then imposing nonhomogeneous
boundary conditions (of which two are needed since the equation is second aggef hrus, a solution

of the IBVP

2
uAl — CZMAZ

u(0, 12) = f(12)

cun(tn, @) — pu2(11, a) = g(1),  yu(rs, 65(b)) + 6u™? (11, 52(b)) = h(11)
foro, B, 7, 6 € Ris needed. To begin searching for a solution of this IBVP, we take the Laplace Transform
with respect ta; (we choose to transform i since our initial value is given in terms aj of both sides of
the equation and the boundary conditions to yield the equivalent BVP (note that the initial value problem
is solved by using the transform, and so the derivative with respegtisoturned into multiplication

by 2)
U%2(z,12) = 35Uz, 12) = =% f(12),
U (z,a) + pU*2(z, @) = G(2), yU(z, 05(b)) + 6U*2(z, o2(b)) = H (2).
If we carefully examine the equation above, it should be noted that the transformed equation is an ODE

in . If Uy (z, 12) denotes the homogeneous solution of this ODE, then it follows that the general solution
has form

Un(z, 12) = c1e 7012, a) + c2e_ sz (12, a).
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We now proceed to solve the BVP. First, note that we must assume that the solution of the corresponding
homogeneous BVP with homogeneous boundary conditions has only the trivial solution. Now, solving
for ¢1 andcs yields the matrix equation

€1\ _ -1, G(2)
<62)_M (H(z)—Q(z)>

a—ﬁﬁ a+£ﬁ
c c

for

M= Jz vz
ve yze(03(b), @) + = =de fzo(02(b), @) e yze(03(b), @) = = =de_ yzo(02(b), )
and
/()
Zcﬁeizﬁ/c(f’ a)
()
ZCﬁe?E/C(T7 a)
f (@)
ZCﬁe%/C(Ta a)
. ﬁ /Gz(b) f(@
e [ e

The validity of this last statement follows from the fact that the variation of parameters formula gives the
solution of the nonhomogeneous ODE. In this spirit, first note that the Wronskian of the two homogeneous
solutions is

5 a5(b)
0(2) = e y1e(dB(b), @) - / Ae

a5(b)
2 2
+ve sz/c(a5(b), a) - /
a

At

a2(b)
- \/TE oe sz1c(o2(b), a) - /a

€Jz/c €—z/c
Wie zrese—yzre) = | Jz N
Yo SEle TTCVE e

Vz Vz Vz
N N e N N i el NN
Then the variation of parameters formula yields

U, (z. 1) = 1 /tz €j2/c(f, a)e_ﬁ/c(lz, a) — efﬁ/c(r, a)eﬁ/c(lz, a)
p{Z 2¢\/7 Ja ef/zg/c(f* a)e_ s.(t.a)

The solution of the ODE is then given y(z, 1) = c1e 012, a) + cae_ fz/c(t2,a) + Up(z, 12).

Itis easy to see that at this point that without an inverse Laplace Transform, there is little hope of finding
asolution of the PDE in general. However, itis possible in certain cases to obtain solutions. For example, if
we assume homogeneous boundary solutions@(e),= H (z) =0, or simply no boundary conditions (so
that we are trying to solve an IVP in this case), then our problem becomes much simpler. In fact, assuming
these conditions in combination with elementary choicesff@g) gives rise to solutions by using the

f (1) At.
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Undetermined Coefficients technique. We shall illustrate the idea with the generalized polynomials (the
reader can see the Appendix in Section 5 for the definition of the generalized polynomials); the results in
the table that follows the example can be obtained by similar calculations. Note that solutions involving
any linear combination of elementary choices fdr») can be found since the equation is linear.

Example 3. Consider the IVP
ult = czuAg
{ u(0, t2) = hyi(t2, 0).
Preceding discussion shows that the IVP is equivalent to the ODE

1
U — SU = —Shi(t2, 0,
C C

Undetermined Coefficients is employed to find the particular solution. Thus, assume that the particular
solution has the form

Up(z, t2) = arhi (12, 0) + azhy—-1(t2, 0) + - - - + anho(t2, 0)

whereay, ay, . . ., a, are constants to be determinedUlf(z, t,) is of this form, then

U;‘%(Z’ t2) = arhg—2(t2, 0) + azhi—3(t2, 0) + - - - + a,—2ho(t2, 0).
Substituting these values into the differential equation yields the algebraic equation
(a1hk—2(t2, 0) + azhi—3(t2, 0) + - - - + an—2ho(t2, 0))
- é(alhk(tz, 0) + azhi-1(t2,0) + - - - + anho(2, 0)) = —C—lzhk(lz, 0).

Close examination of this equation immediately produces the vajued /z anda, = 0. The remaining

a; are a bit more complicated to find. However, upon careful inspection of the equation, the recursive
relationsasi 1 — (z/c?)azi+3 =0 anday; — az;.» = 0 can be seen to hold fo=0, 1, 2, ... . Using the

fact thatap = 0, it is easy to see thap; is zero for alli. Then, using the fact that = 1/z, it follows that

asi+1 = % /z'*1, This information will then lead to a solution, for then

k2] 2
Up(z12) = ) —g hi2; (12, 0,
j=0
where|k/2| denotes the floor df/2, and so
k/2l
up(ty, t2) = Z ¢? h (11, 0)hg—2; (12, 0).
j=0
We now verify that the function given actually solves the IVP. Thus, first note that
Lk/2]

up©.1)= Y ¥hj(0.00h_(t2. 0) = (D) (hi(12. 0) = hy (12, 0),
j=0
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sinceho(t, s) = 1forall¢, s andh;(0,0) = O for j > 0, and so the function given satisfies the initial
condition. Second, if we adopt the standard convention that negative subscripts in an expression vanish
then it follows that

/2] n
wit = > *hj(t1, 0)hy—2;(t2. 0)
j=0
k2 k/21-1
= > Hhj a1, Ohg2j(12.0)0= Y A2 (11, 0y 41)(12, 0),
Jj=0 Jj=0

sincej — 1 is a negative subscript whgn= 0. Likewise,

2 (W 4
wp? =\ Y c¥hj(t1, 022, 0)
i=0
w2 k/2-1
= Z ? h (11, 0)hy—(j+1) (12, 0) = Z ® h (11, 0)hx—2(j+1) (2, 0),
j=0 j=0

where the last equality sign holds since- 2(j + 1) is a negative subscript when= | k/2]. Therefore,
it is indeed clearly the case that

2
A1 2 45
u,t =cuy’,

and so the function is a solution.
Although at this point we may not be able to find the general solution of the IBVP with arbitrary
boundary conditions, there is one important thing that we can note. If we examine the nature of solutions

given by the transformed equation, then assuming an inverse exists, we expect that the general solutiol
would have form

u(ty, ) =P*x18+ Q*x1h+ Rx2of,

whereP, Q, R represent the corresponding inverse transforms of the coefficie6tskf andf, respec-
tively, andx1 denotes convolution with respecttoandx, denotes convolution with respect#o Thus,
we see that the arbitrary time scale is comparable in solutions to the continuouSatals€l

3.2. The homogeneous wave operator

The homogeneous/ave Equatiomn T = T1 x T2 in one (spatial) dimension has the functional form

MA§ _ CzuAg
wherec € R is constant. Clearly, the wave operator is another second order HARBE. If one prefers
operator notation, then define the operator C2(T1 x Tz) — C(Tq1 x T2) by Wu = u4? — 2443, and
so a solution tdVu =0 is needed. Invoking the use of the Laplace Transform requires us to impose initial
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Table 1 5
Particular solutions ta“1 = ¢2u“2 with u(0, t2) = f(t2)

f(t2) up(ty, t2)
Lk/2] 0

hi(t2,0) 'Zo ¢ hj(t1, 0)h_2j(t2, 0)
]:

eq(12,0) ec242(11, 0)eq (12, 0)

cos, (12, 0) e_c242(11,0)c0g; (12, 0)

sing (2, 0) e_o2,2(11, 0)sing (12, 0)

coshy (12, 0) eczqz(t]_, 0)coshy (12, 0)

sinhy (12, 0) ec242 (11, 0)sinhy (12, 0)

values ofu with respect ta1. We may also impose boundary conditions in terms df we so choose.
Thus, a solution of the IBVP
i = Czqu
u(0,12) = f(t2), u(0,12) =g(t2),
ot (11, a) — Pu2(11, a) = h(11), yu(ta, Gg(b)) + ou”2(11, 62(b)) = j (1),
with o, 8, y, 0 € R is desired. Transforming in yields the BVP
A2 ZZ
Uz, 1) = 5UG 1) = - f(tz) zg(tz)
ol (z,a) + pU(z, a) = H(z), U (z, az(b)) +0U*2(z, 02(b)) = J (2).

Thus, just as in the case of the heat equation, we arrive at an OBElinJ;(z, t2) denotes the homo-
geneous solution of this ODE, then it follows that the general solution has form
Un(z, 12) = c1ez)c(t2, a) + coe_ (12, a).

Again, we assume that the trivial solution is the sole solution to the homogeneous BVP with homogeneous
boundary conditions. Applying the boundary conditions and solving-foand ¢, yields the matrix
equation

€1\ _ -1, H(z)
(62)_M (J(Z)—Q(Z)>

with
o — Eﬁ o+ Eﬁ
M= ¢ ¢
vez)c(a5(b), a) + ~oeze(aa(b), @) ye_z/c(a5(b), a) — ~de—z/c(02(b), @)
and

a3(b) 1
Aot vee(aBora) [ fO+ @

2cez/c(‘c a)

a2(b)
Ar——ée_z/c(az(b) a) / 2 Mm.
Z/C(r a)

o3(b) f(r) - %g(r)
o2(b) f(r)+—g(r)

0(2) = ye_s/e(d3(b). a) /

— e e(02(b), a) /
C a



404 B. Jackson / Journal of Computational and Applied Mathematics 186 (2006) 391415

The variation of parameters formula was used again to find the solution of the nonhomogeneous ODE
which was necessary to computeandcs. To verify this solution, we need only note that the Wronskian
of the two homogeneous solutions is

ez/c e_z/c
Wieze,e—zc) = | 2 <
eZ/L —Ee_z/c
= e eege— e ey e=—25¢ e
= - —z/c€z/c c —z/c€z/c = - z/c€—z/c+

Thus, the variation of parameters formula gives

1 [ e;/zc(f, a)e—z/c(t2, a) — etf_zz/c(_c’ a)ezc(t2, a)
U]?(Zv ZZ) = 4 02
a ez/c('ﬂ a)e—z/c(z, a)

1
> (f(f) + - g(f)) At,
c Z

sothatl (z, t2) = c1e;/c(t2, a) + c2e_; /o (t2, a) + U, (2, t2).

Once again, with no inversion formula for the transform, at this point a general solution is not tractable.
However, solutions to the IVP are possible wiiandg are one of the six elementary functions mentioned
earlier by using the Undetermined Coefficients technique. The table of solutions for the wave equation
whenf andg are one of these functions follows this discussion.

Note that if f = f1+ f2 0r g = g1+ g2, for f1, f2, g1, g2 any linear combination of the six functions,
then solutions can be found using the table above by simply adding the corresponding single solutions
to f1, f2, g1, g2. Note that the table can also be used to “mix” the functibmsdg, i.e.,f andg
can be different functions rather than the same as they are in the table. For example, suppose tha
f(t2) = cos, (12, 0) + sin, (t2, 0) andg(z2) = h,(t2, 0). Then a solution to

W
u(0,12) = f(r2), u™(0,12) = g(12)
in this case according to the table is

up(ty, 12) = up, (11, 12) + up, (t1, 12) + up, (11, 12)
L5]
= €O (11, 0)COS, (12, 0) + COS (11, 0)SiNy (12, 0) + D ¥ haia (11, Ohy—2i (12, 0).
i=0
Finally, just as in the heat equation, it is worth noting that solutions in general to the wave equation
are similar to the continuous case in that our discussion of the transform of the equation leads to the

conclusion that solutions are of the forfh« 1 f + Q % 1¢ + R * 2h + S * 2j, where the notation is as
given in the discussion of the heat equatidalile 2.

4. Nonhomogeneous operators
Thus far, we have examined the homogeneous heat and wave operators with corresponding operatc

notationsHu = 0 andWu = 0. Attention is now turned to theonhomogeneowejuations with operator
notationsHu = f andWu = f. The technique for solving nonhomogeneous PDEs is the same as the
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Table 2 5 5
Particular solutions ta“1 = c2u“2 with u(0, t2) = £(t2) andu1(0, ) = g(t2)

f(t2) g(12) up, (11, 12) up, (11, 12)
eq(t2, 0) er(12,0) coshy (11, 0)eq (12, 0) L sinh, (11, 0)e (12, 0)
q r
hq (12, 0) hy (12, 0) %: c? hgi (11, 0)hg—2i (12, 0) L_i: c hai 41(11, 0)hy 2 (12, 0)
cos; (72, 0) cos (12, 0) lcgs.q (t1, O)cos; (72, 0) lci: sing,(t1, 0)cos- (72, 0)
sing (t2, 0) sin. (2, 0) C0Sy (11, 0)sing (12, 0) Cir Sing, (11, 0)sin, (t2, 0)
coshy (12, 0) cosh (12, 0) coshy (11, 0)coshy (12, 0) L% sinhg- (t1, 0)cosh (z2, 0)
sinhy (2. 0) sinh.(t2, 0) coshy (1, 0)sinhy (12, 0) % sinhg (t1, 0)sinh. (2, 0)

technigue for solving nonhomogeneous ODEs: first find the corresponding homogeneous solutions and
then find a particular solution to the nonhomogeneous equation. We have already seen that at this point,
the homogeneous solution is not attainable by the Laplace Transform since no formula for the inverse
is currently known. However, just as in the homogeneous case, a particular solution is tractable when
fis separablei.e. whenf (t1, t2) = g(t1) + h(r2) or f (11, 12) = g(t1)h(t2), and wheng andh are one

of the six elementary functions mentioned earlier. The effedt@f the solutions is that the integrals

for the particular solutions obtained by variation of parameters in the corresponding solutions to the
transformed nonhomogeneous ODEs must be modifiddTiys, first recall that the particular solution

of the homogeneous heat equatin = 0 with u(0, r2) = g(z2) is

Upentn) = — / 0 e (v a)e stz a) — e o (r.a)e f0(2, @)
P 26\/2 a ef/zf/c(r’ a)e—ﬁ/c(fv a)

and so the particular solution to the nonhomogeneous equAtiog f with « (0, t2) = g(f2) is

g(1)Ar,

U ety 1 el (nae gitz,a) —e? o (1, a)e (12, a)
p(a 1) = 2c/z e’2 (t,a)e (
a ﬁ/C ) —ﬁ/c T, a)

by variation of parameters. Next, it was shown earlier that the particular solution of the homogeneous
wave equatioru = 0 with u(0, 1) = g(t2) andu?1(0, 1) = h(z) is

(f (2,1 + g(1)Ar,

1 /’2 el (t.a)e—zc(ta, a) — €7, (1, a)ez/c(t2, @)
a

Up(z,12) = —
p(2,12) ezg/zc(f, aye_z/c(t,a)

(g(f) + }h(f)) A,
2c Z

and so the variation of parameters formula applied to the nonohomogenous wave efuatioyi with
the same initial conditions as before yields that

2

1 /Q el (v a)e_zc(t2, a) — €% ) (1, a)ez/c(t2, @)
a

Up(z,12) =
P 2c eza/zc(r, a)e_;/c(t,a)

1 1
(g(f) + gh(f)-i-zf(z, ’L')) Ar.

We saw that even in the homogeneous case, evaluating these integrals in most cases is unproductive
because the inverse transform is still not known. Howevdr,df andh are one of the six elementary
functions discussed earlier, then we can use undetermined coefficients to determine soluti@asn As
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become rather complicated even when one just considers linear combinations of these six functions, we
give an example of the nonhomogeneous heat equation.

Example 4. Now consider the IVP

{ u — 2yt = sin, (t1, 0) cos (t2, 0)
u(0, 12) = hy(t2,0)  u™1(0, 12) = ey (12, 0).

Transforming the system yields the ODE

2

Z Z
- u a =
C

1
02(22+612) §(r2,0) + 2 k(12,0) + 2 em (2, 0)

We must only solve the equation

2
2z q
U2 — U = ——5——cos(t2, 0
since the second part of the particular solution follows from using TAalrce again, to solve the ODE
above, we employ undetermined coefficients. Thus, a solution of the &gz, 1) = Acos (12, 0) is

found. Taking derivatives, substituting appropriate values, and equating coefficients yields

q
(22 + (% +c%r?)

Up, (z,12) = cos (12, 0)

so that
. 1 .
up, (t1, 1) = — (Slnq(tl, 0) * ;Smcr(tlv 0)) cos (72, 0)

1 . q .
= <m sing (11, 0) — crg? — 33 sin, (11, 0)) cos (22, 0),

where the last equality follows from Bohner and Petef@nSumming all particular solutions gives

up(tlv t2) = Mpr (tla t2) + Mpk (tla tz) + Mpm (tla t2)

1 . q .
= (msmq(fl, 0) — m Sing (71, 0)) cos (72, 0)

Lk/2]

. 1 .
+ D ®haitn, 0hx2i (12, 0) + — sinfy (11, 0)en (12, 0).
i=0

5. Mixed time scales

Up to this point, we have presented solutions on arbitrary time scales, ile=0M; x T2. We now
wish to examine solutions on some specific time scales a little more closely. As will be seen, solutions
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can vary greatly depending on the combination of time scales chosen. The classical éaseg aind
7 x 7 are of course well understood and remain the center of focus, and so attention here will be devoted
to solutions in which the time scales are “mixed”, i.e. not the same. As was mentioned in the introduction,
we believe that probably the most important application of this work is in numerical analysis since we
now have an alternative to adaptive methods. With this in mind, we shall work with mixtures of the time
scalesR, hz, andg™o.
For example, consider the IVP
ult = u“%,

u(0, 1) = cox(12, 0),

whereT =Ty x Tp andT1 and T, are any ofk, 0.17, or L1No U {0}. We have already seen that according
to Tablel, a solution of this PDE for arbitrary, andT> is given by

u(ty, 1) = e_4(t1, 0)co (12, 0).

Thus, for any specific time scalds, and T, involved, we only need to determine the exponential
function corresponding t@; and the corresponding cosine function fbg. The exponential func-
tions of R, 0.17, and 110 U {0} aree~%, (0.6)’/3, and ]_[se(o’,)(l — 0.4s), respectively. With these
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3 3

Fig. 2. 01Z x 0.1Z.

24

2.6 2.6

2.8 2.8

Fig. 3. 11V U {0} x 1.1"0 U {0}.

exponentials, it follows that the respective corresponding cosine functions are, ¢bst20.2i)1% +
(1-0.20)1/2, and[ ;¢ (o) (1 + 0.2is) + [I;¢(0..) (1 — 0.2i5) /2. With these ideas, the following graphs

are offered to illustrate the differences in solutions among the different combinations of the three sets
(Figs. 1-5.)
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3 28

Fig. 4. 11N U {0} x 0.1Z.

Fig. 5.01Z x 1.1V U {0}.

Appendix

A time scale is a nonempty closed subset of the reals in the standard topology. Thus, for ekample,

g%, andhz for ¢ >0 andh > 0 both constants are all time scales. Given a time stalge define the
following: the forward jump operator

g: T — T
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by
o(t):=inf{s € T: s>t},
and the backward jump operator
p: T =T
by
p(t):=sups eT: s<t}.

In our definition, we set inff = supT and su = inf T, so thato(z) = ¢ if T has a maximunt and
p(t) =t if T has a minimunt. If ¢(z) >, then we say thatis right-scatteredand if o(t) = ¢+ we say
t is right-dense Likewise, if p(¢) < ¢, thent is left-scatteredand if p(r) = ¢, thent is left-denself t is
simultaneously left- and right-scattered, then we sayttlsasolated

We also make use of thlggraininess functiom and the set”. Each is defined as follows:

u) :=o(t) —t

T* _ T\(p(supT), supT] if supT < oo and left-scattered
T otherwise

Example 5. Consider the time scalés= R, T=h47, and T =¢Z.
(1) ForT = R, we have
o)y=IinflseR:s>t}=inf(r,o0) =71
and likewise
p(t)=sups € R:s <t} =sup—oo,t)=t.
Thus, every point ifk is dense. We also have that
wit)y=0() —t=t—1t=0.
(2) ForT =hz, we have

o(t)=Inf{s e hZ : s >t}
=inf{t+h,t+2h,t+3h,..}=t+h

and likewise
p(t)y=suds e hZ : s<t}y=sugt —h,t —2h,t —3h,...} =t — h.
From these statements we see that every poihZiis isolated, and that

wt)=o(t) —t=t+h—t=nh.
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(3) ForT = ¢Z, we have
o(t) =inf{s e gZ: s >1}.
Now, if t € T, thent =¢" ort =0 forn € 7. Thus,
inf{s eq_z:s>t}=inf{q’ cren+1,00})=q¢""t=gr,
and

— t
p(t) =supis € gZ:s<t}=supq” :r € (—oo,r =1} =¢" t=-.
q

Thus,r = 0 is right dense and every othee T is isolated. We also have
)=o) —t=qt —t =(q — Dr.
Next, we need theelta derivativeof a functionf : T — R at a pointt € T"*:

Definition 6. Let f : T — R be a function and let € T*. Then we definef4(¢) to be the number
(provided it exists) with the property that given any 0, there exists a neighborhoddl of t, with
U=(@(—-96,t+6)NT for é> 0 such that

Lf (@) — f()] = fAD)o() — s]|<elo(t) — s for all s € U.

We call £/ thedelta derivativeof f att.

We say thatf is differentiable onT* provided the derivative exists for alle T*. Likewise, we callf*
the delta derivative ofon T*.
Bohner and Petersd@] show the following:

Theorem 8. Assumef : T — R s a function withy € T*. Then the following hold

() If fis differentiable at tthen f is continuous at t
(i) If fis continuous at t and t is righscatteredthen f is differentiable at t with

A Sa@®) — f@)
FO=""u
(iii) If tis right densethen fis differentiable at t iff the limit
im J@) — f(s)
s—>t r—s

exists as a finite numbén this case

Py tim L0 =S
s—>t r—s
(iv) If fis differentiable at tthen

fla() = f(t) + u@) fA@).
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Example 6.

(1) LetT = R. Then Theorem 8 part (iii) tells us thgt: R — R is delta differentiable at € R, if and
only if

(1) = lim EAQ RO exists,
s—>1 r—s
and in which case we have
iy =tim TOZID g
s— — 5

Thus, the delta derivative is just the usual derivative in the continuous case.
(2) LetT =hz. Then Theorem 8 part (ii) tells us thit: 2Z — R is delta differentiable at € 47 with

fla(®) — f(@) _ f@&+h)— f()
(1) h
where4 is the usuaforward difference operatadefined for the discrete case.

A = =Af(t)

Example 7.

(1) Let f(r) = 2. We wish to find the delta derivative for the time scalél = hZ. Using Example 6,
we know that

fa+h)— f(t) %+ 2th+h?) — 12

=2t + h.
h h +

A =

(2) Let f(+) =13. Again, we wish to find the delta derivative Hbut this time for the time scale = q_Z.
Letr # 0. Then from Theorem 8 part (ii) and Example 5, we know that

fle@) = f@) ¢33 -3

4 2,2
(t) = = =t(g“+q+1)
/ (1) q-nr T
If + =0 (which is right-dense as we saw in Example 5), then Theorem 8 part(iii) gives us that
. 0) — f(s) .
10 = lim LQ =T iy 2
7O sino O0—s sino s 0

Thus, in either case, the equatigd (r) = r%(¢% + g + 1) holds.
(3) Let T be an arbitrary time scale and Igtr) = ¢, wherec is a constant. We claim that!(r) = 0. To
see this, note that(a(r)) = f(r) = ¢ for all ¢, so that giver: > 0 we have

|f(e()) — f(s) = 0-[a(t) — 5]l = [c — c| =0<ela(r) — 5]

which holdfor all s € T.
(4) Again, letT be an arbitrary time scale. We I¢{r) = . We claim thatf4 () = 1. To see this, first let
¢> 0 and note thaf (¢(t)) = o(¢). SO

[f(a(@) — f(s) =1 (a(t) —s)|=|o(t) —s5 — (a(t) —5)| =0<¢|a(t) — 5|
which holdsfor all s € T.
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The derivative rules given in the following theorem are proven in Bohner and Pef@fson

Theorem 9. Assumef, g : T — R are differentiable at € T*. Then
(i) Thesumf + g : T — Ris differentiable at t with

(f +% ) =10+

(i) For any constank € R, «f : T — R is differentiable at t with
CHNOEETRIO}

(i) The productfg : T — R is differentiable at t with
(fo)' ) = fUDg®) + fla)g () = f(g" (1) + f1)g(a(0)).

(iv) If f(2)f(a(2)) #0, then% is differentiable at t with

(1)A(I) —— &
f  f(Ofe@)’

(v) If g(t)g(a(t)) £ 0, then% is differentiable at t with

(1)“ 0 = 100 — f0g" )
gngl®)

The final thing that we use is theintegral. It is defined as follows:

Definition 7. Letfbe abounded functiondn, ) andletP € #(a, b) begivenbyi=rg<t1 <--- <t,=
b. In each intervalt; _1, t;) with 1<i <n, choose an arbitrary poidi and form the sum

n
S=Y " fEH —ti1).
i=1
Sis a Riemanm-sum off with partition P € 2. fis Riemann integrablen[a, b] if there exists a number
| such that for alk > 0, there exist$ > 0 so that

IS—1I|<e

for every Riemanm-sumS of f corresponding to any’ € 2s(a, b) and independent of the choice of
& € [ti—1, ;) for 1<i <n. The numbet is called theRiemanrni-integral of f from ato b.

It is well known that the standard Fundamental Theorem of Calculus holds for the time scale case,
i.e. thed-integral conforms to the notion of evaluating antiderivatives at endpoints. It is also well known
that the definition of the Riemanfrintegral corresponds to the corresponding usual Riemann integral in
the continuous case. Finally, measure theory allows the extension of the integral to that of the Lebesgue
integral in which measurable sets and measurable functions are considered.

The integration by parts formula is now offered:
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Theorem 10(Integration by Parts Letu and v be continuous functionsfan »] that are4-differentiable
onla, b). If u andv” are integrable from a to fthen

b b
/ uA(t)v(t)At—I—/ u (O (At = ub)v(b) — u(a)v(a).

Example 8.

(1) LetT =hz. We wish to computgfab tAr. Now,

b 1 b 1 b 1 b b
/ tAt:—f 2tAt:—/(2t+h)—hAt:—[f (2t—|—h)At—/ hAt].
a 2 a 2 a 2 a a

Then, sinceF (1) = 2 is differentiable with derivative"4 (1) = 2¢ + h for all a, b € T by Example 7
part 1, the Fundamental Theorem of Calculus implies that

b b
/ (2t + h)At = 1?|) = b? — a?
a
holds for alla, b € T. The second integral in the difference above is now found:

b
f hAt =h(b — a).
a
From this, we deduce that

b 2 _ 42y _ -
/mt:(b a)z(h(b a))

which holds for alla, b € T.
(2) LetT =gZ%. We wish to computqab t?At. Note that ag] is a constant, we have that

b b
f tzAtz;f 2(q% + q + DA
a ?+q+1J

Then, sinceF (r) = ¢ is differentiable with derivative"4(r) = t2(¢42 + ¢ + 1) forall a, b € T by
Example 7 part 2, the Fundamental Theorem of Calculus implies that

3 b b3 _ 483
12(g% 4+ q + DAr =

b
q q a

/bZ B b3—a3
1At = ————
a gc+q+1

foralla,b e T.

?+q+1, ?+q+1

With derivatives and integrals defined, we can now offer one final definition: that of the generalized
polynomials.
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Definition 8. Define thegeneralized polynomial®ecursively as follows:
ho(t,s) =1foralls,r €T

and

t
hk+1(t,s):/ hi(t,s)Atr  foralls,t € T.
N

According to this definition, it follows that by Iettiﬂgf‘ (z, s) denote the derivative @ (¢, s) with respect
tot for fixed sthen

hi(t,s) = hi_1(t,s) for ke N, ¢ € T".
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