
ABSTRACT

Stability of Non-Diagonalizable Switched Linear Systems on Time Scales

John E. Miller, M.S.E.C.E.

Advisor: Ian A. Gravagne, Ph.D.

This thesis investigates the stability of switched linear systems on time scales

using Lyapunov stability theory. First, we focus on the most general case, non-

diagonalizable systems with arbitrary switching. Subsequently, a constrained switch-

ing case is investigated. Several examples are given for both cases.

Switched linear systems are often found wherever a dynamical system is coupled

with supervisory control logic that can abruptly change the system’s operating mode,

such as in the transmission of a vehicle or on computer-controlled real-time networks.

This coupling of a dynamical system with discrete logic is difficult to model on stan-

dard time domains, especially if the switching events are non-uniformly spaced. Time

scales mathematics allows for these non-uniform time domains.

Page bearing signatures is kept on file in the Graduate School.

Stability of Non-Diagonalizable Switched Linear Systems on Time Scales

by

John E. Miller, B.S.E.C.E.

A Thesis

Approved by the Department of Electrical and Computer Engineering

Kwang Y. Lee, Ph.D., Chairperson

Submitted to the Graduate Faculty of

Baylor University in Partial Fulfillment of the
Requirements for the Degree

of
Masters of Science in Electrical and Computer Engineering

Approved by the Thesis Committee

Ian A. Gravagne, Ph.D., Chairperson

John M. Davis, Ph.D.

Robert J. Marks II, Ph.D.

Accepted by the Graduate School
August 2009

J. Larry Lyon, Ph.D., Dean

Copyright c© 2009 by John E. Miller

All rights reserved

TABLE OF CONTENTS

LIST OF FIGURES v

ACKNOWLEDGMENTS vii

CHAPTER ONE
Background 1

LTI Systems . 1
Stability . 3
Switched Systems . 4
Time Scales . 6

CHAPTER TWO
General Temporal Region of Stability 11

Introduction . 11
Problem Setup . 11
Diagonal Case . 12
Jordan Epsilon Form . 13
Lyapunov Analysis . 14
Transition Matrix . 16
Temporal Region of Stability . 20
Examples . 23

CHAPTER THREE
Application to Controller Area Network 28

Introduction and CAN . 28
Problem Setup . 29
Commutativity . 30
Constrained Temporal Region of Stability 32
Examples . 33

CHAPTER FOUR
Conclusions 39

General Conclusions . 39
Open Questions . 42

APPENDIX A
Constrained Temporal Region of Stability 44

APPENDIX B
Matlab Function Reference 48

muregion.m . 48
mubounds.m . 52

iii

BWmuregion.m . 56
inside bound.m . 59
violate bound.m . 61

BIBLIOGRAPHY 64

iv

LIST OF FIGURES

1.1 Stable and unstable switching . 5

1.2 Examples of common time scales. 7

1.3 The Hilger complex plane (Cµ) and Hilger circle (Iµ). 8

2.1 R (for ε = 0.3.) . 25

2.2 Rε for ε = 0.3. 25

2.3 Rε for ε = 0.3× 10−5. 25

2.4 Rε for ε = 0.3× 10−15. 25

2.5 R (for ε1 = 0.2 and ε2 = 0.1.) . 26

2.6 Rε for ε1 = 0.2 and ε2 = 0.1. 26

2.7 Rε for ε1 = 0.2× 10−5 and ε2 = 0.1× 10−5. 26

2.8 Rε for ε1 = 0.2× 10−15 and ε2 = 0.1× 10−15. 26

2.9 R given analytically by (2.2). 26

2.10 Region given by numerical computation of (2.10). 26

3.1 CAN network diagram. 28

3.2 Eigenvalues of A and A+BK for Example 1. 35

3.3 Rc for µi < µmax and i = {1, . . . , 10}. 35

3.4 Rc for .25µmax < µi ≤ .75µmax and i = {1, . . . , 10}. 35

3.5 Rc for µi < µmax and i = {3, . . . , 8}. 36

3.6 Eigenvalues of A and A+BK for Example 2. 36

3.7 Rc for µi < µmax and i = {1, . . . , 10}. 36

3.8 Rc for .25µmax < µi ≤ .75µmax and i = {1, . . . , 10}. 37

3.9 Rc for µi < µmax and i = {3, . . . , 8}. 37

3.10 Eigenvalues of A and A+BK for Example 3. 37

3.11 Rc for µi < µmax and i = {1, . . . , 10}. 38

v

3.12 Rc for .25µmax < µi ≤ .75µmax and i = {1, . . . , 10}. 38

3.13 Rc for µi < µmax and i = {3, . . . , 8}. 38

4.1 Stable system with {µ, µσ} ∈ R. Each “+” represents a {µ, µσ} ∈ T. 41

4.2 Stable system with µ ≤ µmax. 41

4.3 Unstable system with µ ≤ 2µmax. 41

vi

ACKNOWLEDGMENTS

I would first like to thank Dr. Gravagne for being an excellent mentor. This

thesis would certainly not be possibly without his guidance and leadership. Second,

I want to thank the other members of the Baylor Time Scales Research Group, Dr.

Davis, Dr. Marks, and Alice Ramos, who have worked right along side me in this

research. I am also grateful for the support of the Baylor Engineering program, both

for the instruction I have received at the undergraduate and graduate levels as well

as for the financial support while being a graduate student. Finally, I want to thank

my wife Sarah for her support, especially during the many hours of work I have put

into preparing this thesis.

vii

CHAPTER ONE

Background

LTI Systems

Linear systems are ubiquitous in engineering, and much theory has been devel-

oped to describe, analyze, and design them [2, 5, 19]. We focus on causal, lumped-

parameter, linear time-invariant (LTI) systems. All physical systems are causal sys-

tems, which means that their output depends only on current or previous inputs.

Lumped, as opposed to distributed, systems have a finite number of state variables.

Throughout this thesis, we will assume all systems are causal and lumped. We can

mathematically describe a (causal and lumped) linear system with a state variable

model of the form

ẋ(t) = A(t)x(t) +B(t)u(t), t ∈ R, (1.1)

where x : R → Rn is the state vector, u : R → Rp is the input, ẋ := dx(t)
dt

, and

A ∈ Rn×n, B ∈ Rn×p. In (1.1), we have explicitly noted that the system A and input

B matrices are time-varying. Time-invariant means that the output of our system is

the same for a given initial state and input, regardless of the time that the input was

applied. This requires that our system and input matrices be constant, which yields

a system of the form

ẋ(t) = Ax(t) +Bu(t). (1.2)

In most of the following discussion, we will assume the system (1.1) is autonomous

and closed-loop (i.e. u is a linear function of x) and can be generally written as

ẋ(t) = Ax(t). (1.3)

One important note about LTI system theory is that continuous-time and

discrete-time systems have to be treated as separate cases. Equation (1.2) is the

1

appropriate equation for the continuous-time case but can be discretized by a sample-

and-hold method to get the discrete-time case. This means the input to our system

will come from a discrete controller, pass through a digital-to-analog converter, and

will be piecewise constant. In other words,

u[k] := u(kh) = u(t), for kh ≤ t < (k + 1)h, (1.4)

where h > 0 is the sample period and k ∈ N0 = {0, 1, 2, . . .}. Then, if we also compute

the response of the system only at t = kh, it can be shown [5] that the system takes

the form

x[k + 1] = eAtx[k] +

(∫ h

0

eAτdτ

)
Bu[k]

= Adx[k] +Bdu[k] (1.5)

where the matrix exponential function, eAt, is defined as

eAt := I + tA+
t2

2
+ . . . =

∞∑
k=0

1

k
tkAk. (1.6)

I is the standard identity matrix. In order to rewrite Bd, we also define the exponent

cardinal as

expc(hA) := hI +
h2

2
A+

h3

3
A2 + · · ·

=

∫ h

0

eAτdτ

= (ehA − I)A−1 when A−1 exists. (1.7)

Thus, Bd = expc(hA)B. One useful property of the expc function is that expc(X)→

I as X → 0.

We next define the state transition matrix. The state transition matrix describes

the system’s transition from one state to the next. For a linear system of the form

(1.1), the state transition matrix, Φ(t, t0), is the unique solution of the initial-value

problem

Ẋ(t) = A(t)X(t), X(t0) = I, (1.8)

2

where, in general, A can be time-varying and we have used X to denote an n × n

matrix. Since A is constant for an LTI system, we get the familiar result Φ(t, t0) =

eA(t−t0). A discrete version also exists and is Φ[k, k0] = A
(k−k0)
d , which can be readily

deduced from (1.5) with u[k] ≡ 0.

Stability

One of the important topics in dynamic systems and, in particular, control

theory, is that of stability. Stability deals with how “well-behaved” a system is.

There are several methods to determine stability of a system [2, 5, 19]. We will first

quantify the definition of stability in terms of standard linear systems theory. Then,

we will define stability in the sense of Lyapunov and use his second (or direct) method

[21] to determine the stability of our system.

We say that the state of the system is bounded if there exists some constant xb

such that

‖x(t)‖ ≤ xb <∞ ∀ t ≥ 0 (1.9)

(i.e. the system has a finite response). For some given initial condition, x(0) = x0,

the solution of (1.2) is x(t) = eAtx0. By applying a similarity transformation to A

(and thus to eAt), we can show that, for (1.9) to be true, all of the eigenvalues of

A must have negative real parts. If A satisfies this condition, it is called a Hurwitz

matrix. In the discrete case, the solution to (1.5) is x[k + 1] = Akdx[0] for u[k] ≡ 0,

which means that all of the eigenvalues of Ad must have magnitude less than one (i.e.

inside the unit circle in the z-plane). These are common results in standard control

theory. We now move on to Lyapunov theory.

We say that the system (1.2) is stable if for every ε > 0 there exists a δ > 0

such that

‖x(0)‖ ≤ δ ⇒ ‖x(t)‖ ≤ ε ∀ t ≥ 0. (1.10)

3

The system is asymptotically stable if it is stable and δ can be chosen so that

‖x(0)‖ ≤ δ ⇒ x(t)→ 0 as t→∞. (1.11)

According to Lyapunov’s stability theorem, if there exists a positive definite Lyapunov

function V : Rn → R and it satisfies

V̇ (x) < 0, ∀ x 6= 0, (1.12)

then the LTI system (1.2) is asymptotically stable. For LTI systems, the typical

method used is to construct a Lyapunov function candidate in the quadratic form

V (x) = xTPx (1.13)

where, if P is a positive definite symmetric matrix, then V is positive definite. V̇

then becomes

V̇ (x) = xTPẋ+ ẋTPx

= xT (PA+ ATP)x

= −xTQx (1.14)

where Q := −(ATP + PA) must be a positive definite symmetric matrix in order for

the system to be stable.

Switched Systems

Many dynamical systems feature a combination of continuous and discrete dy-

namics. Such systems are often called hybrid systems. One of the sub-categories of

hybrid systems is switched systems, where the overall dynamics are described using a

number of sub-systems (modeled by continuous- or discrete-time dynamics) coupled

with discrete switching events. These systems are the focus of [20], which gives a good

introduction and presents much of the theory that has been developed for switched

systems.

4

We define a switched linear system as

ẋ(t) = Ac(t)x(t), t ∈ R+ (1.15)

where c : R+ → {1, 2, . . . ,m} is a switching signal which chooses one of a finite set

(or family) of matrices Ai ∈ Rn×n with i ∈ {1, 2, . . . ,m}. If each individual system is

stable (i.e. each Ai is Hurwitz), then we are guaranteed the existence of a quadratic

Lyapunov function for each system. And if we can find a single common quadratic

Lyapunov function which satisfies

ATi P + PAi ≤ −Q, ∀ i = 1, . . . ,m (1.16)

for Q a positive definite symmetric matrix, then we say that the switched system

(1.15) is asymptotically stable.

Figure 1.1. Phase plots showing that switching can produce either sta-
bility (top) or instability (bottom) from the same sub-systems (which
are both stable in this case).

5

Switched systems are time-varying because of the switching mechanism. Figure

1.1 shows how switching can introduce either stability or instability into a switched

system, even when its constituent sub-systems are stable. (Note that this is not as

simple as these plots may make it seem.) While the system can no longer be expressed

in the form of (1.1), meaning the Hurwitz criteria from the section on Stability does

not apply, Lyapunov’s stability criteria applies to time-varying systems.

Time Scales

As discussed in the previous two sections, modeling dynamical systems may

involve both continuous- and discrete-time mathematics. This presents a significant

difficulty when dealing with hybrid systems. Time scales is a branch of mathematics,

first introduced by Stefan Hilger in [15], which seeks to both unify and extend the

theory from continuous and discrete mathematics. Accordingly, one of the major areas

of study in time scales is that of dynamic equations on time scales, which includes

this thesis and a number of other publications [1, 4, 8, 9, 10, 12, 18, 22]. Bohner and

Peterson present the basics of time scales theory in their introductory text [3]. We

will present several definitions in this section to develop the theory necessary for the

rest of the discussion.

A time scale, denoted as T, is any closed subset of the real numbers, R. Figure

1.2 shows several examples of common time scales.

The forward jump operator, σ(t), and the backward jump operator, ρ(t), are

defined by

σ(t) := inf{s ∈ T : s > t} (1.17)

ρ(t) := sup{s ∈ T : s < t}. (1.18)

These return the next and previous points in the time scale, respectively. We say that

a point t ∈ T is left-dense, right-dense, left-scattered, or right-scattered if ρ(t) = t,

σ(t) = t, ρ(t) < t, or σ(t) > t, respectively. In this thesis, we call a contiguous set of

6

(a) T = R

(b) T = Z

(c) T = Pa,b

(d) T = qZ

(e) T

Figure 1.2. Time scale examples: (a) Continuous-time (real numbers)
(b) Uniform discrete-time (integers) (c) Periodic continuous intervals
(d) “Quantum” time scale with q = 2 (e) Random discrete.

points which are both left- and right-dense, a continuous interval (or just continuous),

and we call a contiguous set of points which are both left- and right-scattered a discrete

interval (or just discrete).

The graininess, µ(t), is equivalent to the distance between the current and next

points (i.e. the step size) and is defined by

µ(t) := σ(t)− t. (1.19)

In this thesis, we will also use the idea of a bounded graininess on the time scale T,

defined by

µmax(t) := sup
t∈T

µ(t). (1.20)

The graininess will play a major role in the rest of the discussion.

The graininess and forward jump operators can also operate on each other or

themselves. For instance, σ(σ(t)) will give us the “next, next” point and µ(σ(t)) will

give us the graininess of the next point. An alternate notation, which we will use

from now on, is µσ(t) := µ(σ(t)).

7

We define a delta (or Hilger) derivative by

f∆(t) :=
f(σ(t))− f(t)

µ(t)
(1.21)

if t is right-scattered and f is differentiable at t (see [3] for a formal definition of

differentiable). Note that if T has a left-scattered maximum M , then we can only

talk about the derivative on Tκ = T − {M}. All subsequent references to the delta

derivative on time scales with discrete intervals will be subject to this condition, even

if not shown explicitly. If t is right-dense and f is differentiable at t, then it will take

the form

f∆(t) = lim
s→t

f(t)− f(s)

t− s . (1.22)

We next define the Hilger complex numbers as

Ch :=

{
z ∈ C : z 6= −1

h

}
(1.23)

for h > 0. Along with this, the Hilger imaginary circle (or just Hilger circle) is

defined as

Ih :=

{
z ∈ Ch :

∣∣∣∣z +
1

h

∣∣∣∣ =
1

h

}
(1.24)

These two ideas are easiest to see graphically, as shown in Figure 1.3.

− 1
µ

Figure 1.3. The Hilger complex plane (Cµ) and Hilger circle (Iµ).

8

We also introduce “circle plus” addition, defined by

z ⊕ w := z + w + zwh (1.25)

for z, w ∈ Ch. Note that a “circle minus” operator also exists, but we will not make

use of it in this thesis. The function p : T→ R is regressive if

1 + µ(t)p(t) 6= 0, ∀ t ∈ Tκ. (1.26)

An n× n matrix-valued function A(t) on a time scale T is regressive if

I + µ(t)A(t) is invertible for all t ∈ Tκ. (1.27)

Note that A is regressive if and only if the eigenvalues, λi(t), of A are regressive for

all 1 ≤ i ≤ n.

The general, first-order time scales dynamic equation is of the form

x∆(t) = p(t)x(t), x(t0) = x0 (1.28)

where p is regressive. Similar to the standard exponential function, the time scale

exponential function, ep(t, t0), is defined in [3] and is the unique solution to (1.28)

with x0 = 1. Again, similar to the case on R, we can guarantee that a time scales

LTI system (like (1.28), except p is constant) is stable if p is inside the Hilger circle

for all t. In other words,

|1 + µ(t)p| < 1, ∀ t ∈ T. (1.29)

The general, first-order time scales linear dynamic equation is of the form

x∆(t) = A(t)x(t), x(t0) = x0. (1.30)

where A is regressive. The time scale matrix exponential function, eA(t)(t, t0) is the

unique solution to (1.30) with x0 = I. For LTI systems, A is constant, so we have

eA(t, t0). For the case where T = R, this becomes the familiar matrix exponential

9

function eA(t, t0) = eA(t−t0). When T = hZ, we have eA(t, t0) = (I + hA)
(t−t0)
h . We

define the time scale state transition matrix, Φ(t, t0), where ΦA(t)(t, t0) = eA(t)(t, t0)

for the system (1.30). In accordance with the examples just given (for A constant),

when T = R, ΦA(t, t0) = eA(t−t0), and when T = hZ, ΦA(t, t0) = (I + hA)
(t−t0)
h .

We can guarantee stability of the system (1.30) if all of the eigenvalues λ of A

satisfy

|1 + µ(t)λi| < 1, ∀ 1 ≤ i ≤ n and t ∈ T. (1.31)

This should seem fairly intuitive in light of the scalar time scale case and the matrix

standard (R) case. From [7], we have that exponential and asymptotic stability are

equivalent for the system (1.30). Thus, the condition (1.31) implies both.

Table 1.1. Analogous properties of standard time domains.

R Z T
Continuous (µ = 0) Discrete (µ = 1) Hybrid (µ(t))

Standard derivative Forward difference Delta (Hilger) derivative

f ′(t) = limh→0
f(t+h)−f(t)

h
∆f(t) = f(t+ 1)− f(t) f∆(t) = f(σ(t))−f(t)

µ(t)

Ordinary differential
equation Difference equation Dynamic equation

y′ = λy, y(t0) = 1 y[k + 1] = λy[k], y[k0] = 1 y∆ = λy, y(t0) = 1
⇓ ⇓ ⇓

y(t) = eλ(t−t0) y[k] = λt−t0 y(t) = eλ(t, t0)

Stability in Hilger’s
Stability in the s plane Stability in the z plane complex plane

Re λ < 0 |λ| < 1 |1 + µλ| < 1

Table 1 gives a summary of various properties of the standard time domains, R

and Z, compared with an arbitrary time scale T.

10

CHAPTER TWO

General Temporal Region of Stability

Introduction

We now examine the stability of switched LTI systems on time scales. We

begin by defining the system and making several assumptions. We then apply Lya-

punov’s theorem to the system and develop constraints on the time scale itself in

order to maintain stability. These constraints form a two-dimensional plane we term

the temporal region of stability (or TRoS).

Problem Setup

Consider the set of subsystem matrices A1, A2, . . . , Am ∈ Rn×n with switching

signal c : T→ {1, 2, . . . ,m}, where

x∆(t) = Ac(t)x(t), t ∈ T, t ≥ 0 and x(0) = x0. (2.1)

We make the following assumptions about this system and the underlying time scale:

A1 The switching signal c is arbitrary over T.

A2 The eigenvalues of all of the Ai are strictly within the Hilger circle for all
t ∈ T. (This means each Ai is stable with respect to the time scale T.)

A3 Each Ai is regressive. (Meaning that (I + µ(t)Ai)
−1 exists ∀ t ∈ T.)

A4 The family {Ai} is pairwise commutative, i.e. AiAj = AjAi ∀ i 6= j.

A5 T has the following properties: (i) 0 ∈ T, (ii) T is unbounded above, (iii) T
has graininess 0 < µmin ≤ µ(t) ≤ µmax for all t ∈ T.

The reasons for these assumptions are:

R1 We want to investigate the most general case, where the system can switch
from any subsystem Ai to an other subsystem Aj at any time. (This also
happens to yield the most conservative TRoS.)

11

R2 Required if we want arbitrary switching. For example, if we included an un-
stable subsystem, we could choose an “arbitrary” switching signal that never
leaves that unstable subsystem and, therefore, makes the switched system
unstable.

R3 We need to be able to invert this term, which is the definition of regressivity
given in (1.27).

R4 This is a specific and commonly studied class of switched systems. We use this
assumption to guarantee that the set of subsystem matrices is simultaneously
Jordan-diagonalizable.

R5 The systems we are interested in evolve on discrete, non-uniform graininess
time scales. Also, the stability requirement (A2) for the Ai’s yields a µmax

which corresponds to the smallest Hilger circle encompassing all the eigenval-
ues of all the Ai’s.

Diagonal Case

The results for the simultaneously diagonalizable (or just diagonal) case have

been derived previously in [12]. These results are analogous to the results presented

in this thesis, and thus, we show only one development (the more general one) of

them. In [12], we define a region R as the set of all {µ(t), µσ(t)} such that

m∏
k=1

K−1
k Kσ

k > (I + µΛ∗i)(I + µΛi), for i = 1, . . . ,m (2.2)

with 0 < µmin ≤ µ(t) ≤ µmax for all t ∈ T and Ai = S−1ΛiS, where Λi is diagonal

and n× n. Kk is defined as

Kk := 2 Re Λk + µΛ∗kΛk (2.3a)

Kσ
k := 2 Re Λk + µσΛ∗kΛk. (2.3b)

It turns out that the inequalities in (2.2) yield a set of 2m polynomials in the variables

µ and µσ, under which the system is stable. We will explore this further and give

examples after the proof of the general (non-diagonal) theorem.

12

Jordan Epsilon Form

Apart from the above assumptions, we do not want to limit the cases we ex-

plore any further. Thus, we want to include all possible subsystem matrices in our

investigation. This requires that the Ai’s not be simply diagonalizable (as was the

case for (2.2)), but, more generally, Jordan-diagonalizable as it is known that every

square matrix is similar to a Jordan matrix [23]. Jordan-diagonalizable means that

the Ai’s have a similarity transformation Ai = S−1JiS which yields a Jordan form

matrix Ji. By assumption A4 and a theorem [17], the Ai’s are simultaneously Jordan-

diagonalizable, meaning that there exists a single similarity transform, S, for all of

them.

When applying the similarity transform A = S−1JS, J is typically put in Jordan

canonical form whenever it cannot be completely diagonal. The Jordan canonical form

is defined as

J =



λ 1

λ 1

λ 1

. . .


,

where we note two important observations. The first is that we have only a single

eigenvalue. This is because distinct eigenvalues are not “coupled” through the matrix

and can thus be separated into uncoupled Jordan blocks, which we can then treat

independently. The second is that the choice of ones (1’s) on the superdiagonal is

arbitrary. Thus, we will define what we call the “Jordan epsilon form.” This is a

little known, but useful, technique for proving certain arguments [17, p.128]. Let

A = S−1
ε JεSε with

Jε =



λ ε

λ ε

λ ε

. . .


,

13

where ε is arbitrary and 0 < ε < 1. Jε comes from the generalized eigenvector

equations

Ax̄1 = λx̄1, Ax̄2 = λx̄2 + εx̄1, Ax̄3 = λx̄3 + εx̄2, . . .

⇒ (A− λI)x̄1 = 0,
(A− λI)

ε
x̄2 = x̄1,

(A− λI)

ε
x̄3 = x̄2, . . .

⇒ (A− λI)x̄1 = 0,
(A− λI)2

ε
x̄2 = 0,

(A− λI)3

ε2
x̄3 = 0, . . .

Thus, let Sε = [x̄1 εx̄2 ε
2x̄3 . . .] where the x̄i are the eigenvectors of A. S−1

ε JεSε is a

valid similarity transform (as multiplication by a scalar doesn’t change the fact that

the x̄i are eigenvectors). We term Jε the Jordan epsilon form. Henceforth, let S = Sε

and J = Jε.

It will be useful to look at J as the sum of two matrices (called an SN decom-

position; see [16]), J = Λ +N , where

Λ =



λ 0

λ 0

λ 0

. . .


, N =



0 ε

0 ε

0 ε

. . .


.

N is a nilpotent matrix with ε on the superdiagonal, and Λ is a diagonal matrix of

the eigenvalues. Note that N being nilpotent of order n means that Nn = [0], where

N (and A, Λ, and J) is n× n.

Lyapunov Analysis

As was pointed out in the section on Switched Systems in Chapter 1, stability

of the individual subsystems (now given by assumption A2) is not enough to ensure

stability of the switched system. This gives rise to the question that we seek to

answer: how do we guarantee stability of the switched system as a whole? Just as

we did on R in Chapter 1, we will apply Lyapunov’s second (or direct) method on T.

Note that all quantities can be assumed to be time-varying except for the Ai, unless

14

otherwise indicated. Without loss of generality, we restrict the following analysis to

m = 2.

To investigate stability of (2.1), we define a Lyapunov candidate

V = xTPx (2.4)

where P = P T > 0. To ensure stability, we need

V ∆ < 0

⇒ ATi P + PAi + µATi PAi + (I + µATi)P∆(I + µAi) < 0. (2.5)

We now set

ATi P + PAi + µATi PAi = −Mi, (2.6)

where Mi = MT
i > 0 and solve for P . It can be shown [22] that P solves (2.6) for all

i if

P (t) =

∫
St

ΦAi(s, 0)TMi(t)ΦAi(s, 0)∆s (2.7)

and

M1(t) =

∫
St

ΦA2(s, 0)TQ(t)ΦA2(s, 0)∆s (2.8a)

M2(t) =

∫
St

ΦA1(s, 0)TQ(t)ΦA1(s, 0)∆s, (2.8b)

where St = µ(t)N0, Q = QT > 0 is an arbitrary “seed” matrix, and ΦAi(s, 0) is the

transition matrix that solves y∆(s) = Aiy(s) with s ∈ St and an initial condition

y(0) = y0. For each fixed t, St is a constant-graininess time scale, so

ΦAi(s, 0) = eAi(s, 0) = (I + µ(t)Ai)
s
µ(t) . (2.9)

Substituting (2.6) into (2.5) yields

(I + µAi)
TP∆(I + µAi)−Mi < 0, for t ∈ T (2.10)

where P∆ = Pσ−P
µ

. Note that the only terms in (2.10) which depend on t are µ and

µσ.

15

We can now pose the following, more specific, question: given a time t ∈ T,

what is the region R ∈ R2 such that {µ(t), µσ(t)} ∈ R satisfies (2.10) for all i? We

need to develop a couple of tools before we can answer this question.

Transition Matrix

Triangular Transition Matrix

Remembering that s ∈ St := µ(t)N0, we may now rewrite (2.9) with z = s
µ
∈ N0

(where we drop t to simplify notation) to obtain

ΦA(s, 0) = eA(s, 0) = (I + µA)
s
µ = (I + µA)z. (2.11)

Applying the Jordan epsilon similarity transform to A then gives

ΦA(s, 0) = (I + µA)z

= (I + µS−1JS)z

= S−1(SS−1 + µJ)zS

= S−1(I + µJ)zS

= S−1ΦJ(s, 0)S. (2.12)

Expanding ΦJ as a binomial series we get

ΦJ(s, 0) = (I + µJ)z

= (I + µ(Λ +N))z

= ((1 + µλ)I + µN)z

=
z∑

k=0

(
z

k

)
(1 + µλ)z−k(µN)k. (2.13)

16

If z < n− 1, then this is the final form of the binomial series, and the series is finite.

If z ≥ n− 1, then the series is truncated at n− 1 because N is nilpotent, and we get

ΦJ(s, 0) = (1 + µλ)zI +

(
z

1

)
(1 + µλ)z−1(µN) + . . .

+

(
z

n− 1

)
(1 + µλ)z−n+1(µN)n−1 + [0] + [0] + . . .

= (I + µΛ)z +
n−1∑
k=1

(
z

k

)
(1 + µλ)z−k(µN)k (2.14)

which is still finite for any z. Now, let

ΦJ(s, 0) = (I + µΛ)z + E(s) = eΛ(s, 0) + E(s) (2.15)

where

E(s) :=
z∑

k=1

(
z

k

)
(1 + µλ)z−k(µN)k

(
recall z =

s

µ

)
. (2.16)

In other words, E is an error matrix that depends on ε, is upper-triangular with zeros

on the diagonal, and is at most of order εn−1. Note that ‖E‖ → 0 as ε→ 0.

Error Terms

In the following discussion, many such error terms will appear, so we list them

here for the sake of clarity:

Ei(s) :=
z∑

k=1

(
z

k

)
[1 + µλi]

z−k[µN]k (2.17a)

E1i :=

∫
St

[
eΛ̄i(s, 0)Ei(s) + E∗i (s)eΛi(s, 0) + E∗i (s)Ei(s)

]
∆s (2.17b)

E2 := −E11[2 Re Λ2 + µΛ∗2Λ2]−1 − E12[2 Re Λ1 + µΛ∗1Λ1]−1 + E11E12 (2.17c)

E3i := µ(I + µJi)
−∗E1j(I + µJi)

−1 − E2σ + E2 (2.17d)

E4i := µ(1 + µλi)N
∗ + µ(1 + µλ̄i)N + µ2NN∗ (2.17e)

E5i := E4i[(I + µJi)(I + µJ∗i)]−1 +K1E3iK2 (2.17f)

where j = 2, 1 and ∗ denotes conjugate transpose. Note: E2 is the same for i = 1, 2.

17

Transition Matrix Quadratic Integral

In proving the main theorem of this thesis, we will make use of the following

lemma:

Lemma 2.1 (Transition Matrix Quadratic Integral). Let A = S−1JS, where J ∈ Cn×n

is a Jordan epsilon form matrix, and be stable on time scale S = hN0 for h > 0. Then∫
S

ΦJ(s, 0)∗ΦJ(s, 0)∆s = −[2 Re Λ + hΛ∗Λ]−1 + E1, (2.18)

where J = Λ +N , with Λ diagonal and N nilpotent, and E1 is defined as in (2.17b).

Proof. Using the definition of ΦJ from (2.15) gives∫
S

ΦJ(s, 0)∗ΦJ(s, 0)∆s =

∫
S
[e∗Λ(s, 0) + E∗(s)][eΛi(s, 0) + E(s)]∆s. (2.19a)

By assumption A2, the left hand side of (2.19a) converges. We can expand it to see

=

∫
S

[eΛ̄(s, 0)eΛ(s, 0) + eΛ̄(s, 0)E(s) + E∗(s)eΛi(s, 0) + E∗(s)E(s)] ∆s

=

∫
S
eΛ̄(s, 0)eΛ(s, 0)∆s+ E1, (2.19b)

where E1 is defined as in (2.17b). E1 must be finite because the integral on the left

side of (2.19a) converges and the first term of (2.19b) is positive definite.

The first term of (2.19b) is an integral of a diagonal matrix, thus we only need

to prove statements about it for the scalar case. The following result is repeated from

[12]. Let λ = Λ(1, 1). As stated in (2.9), the transition matrix equates to the time

scale exponential on the constant graininess time scale S. Thus, Φλ(s, 0) = eλ(s, 0).

We then have ∫
S

Φ∗λ(s, 0)Φλ(s, 0)∆s =

∫
S
eλ̄(s, 0)eλ(s, 0)∆s

=

∫
S
eλ̄⊕λ(s, 0)∆s (2.20)

where ⊕ is the time scales “circle plus” operator defined in (1.25). The exponent

evaluates to

λ̄⊕ λ = 2 Re (λ) + h|λ|2 =
|1 + hλ|2 − 1

h
. (2.21)

18

By assumption A2, we have that |1 + hλ| < 1. Thus, λ̄ ⊕ λ is strictly within the

Hilger circle (i.e. stable) on S and the integral becomes∫
S
eλ̄⊕λ(s, 0)∆s =

1

−2 Re (λ)− h|λ|2 . (2.22)

We can apply this scalar equation to our diagonal matrix to get∫
S
eΛ̄(s, 0)eΛ(s, 0)∆s = −[2 Re Λ + hΛ∗Λ]−1. (2.23)

Substituting this into (2.19), we have∫
S

ΦJ(s, 0)∗ΦJ(s, 0)∆s = −[2 Re Λ + hΛ∗Λ]−1 + E1 (2.24)

which is the lemma statement.

In order to simplify (2.18), we define the following quantities

Ki := 2 Re Λi + µΛ∗iΛi (2.25a)

Kσ
i := 2 Re Λi + µσΛ∗iΛi. (2.25b)

Note that K−1
i always exists because Ki is diagonal and has non-zero eigenvalues as

a result of assumption A2. We can now rewrite (2.18) in terms of (2.25), yielding∫
S

ΦJi(s, 0)∗ΦJi(s, 0)∆s = −K−1
i + E1i. (2.26)

Next, note

lim
ε→0

∫
S

ΦJi(s, 0)∗ΦJi(s, 0)∆s = −K−1
i . (2.27)

Using Lemma 2.1 (or more concisely, (2.26)), we can now answer the question we posed

earlier: given a time t ∈ T, what is the region R ∈ R2 such that {µ(t), µσ(t)} ∈ R

satisfies (2.10) for all i?

19

Temporal Region of Stability

Theorem 2.1 (General TRoS). Under assumptions A1-A5, given a set of matrices

Ai = S−1JiS for 1 ≤ i ≤ m where the Ji are Jordan epsilon form matrices with

Ji = Λi + N and S is a simultaneous similarity transform, there exists a region

R ∈ R2 consisting of pairs {µ, µσ} such that

m∏
k=1

K−1
k Kσ

k > (I + µΛ∗i)(I + µΛi), for i = 1, . . . ,m (2.28)

with 0 < µmin ≤ µ(t) ≤ µmax for all t ∈ T.

Proof. As we have done thus far, we will investigate the m = 2 case, without loss of

generality. Substituting (2.8a) into (2.7) for i = 1, we get

P =

∫
St

ΦA1(s, 0)TM1ΦA1(s, 0)∆s

=

∫
St

ΦA1(s, 0)T
(∫

St
ΦA2(r, 0)TQΦA2(r, 0)∆r

)
ΦA1(s, 0)∆s

=

∫
St

∫
St

ΦA1(s, 0)TΦA2(r, 0)TQΦA2(r, 0)ΦA1(s, 0)∆r∆s. (2.29)

Since Q in (2.8) may be any arbitrary, positive definite matrix, we choose Q = S∗S.

Substituting this and applying the Jordan epsilon similarity transform Ai = S−1JiS

to (2.29) gives

P =

∫
St

∫
St

(
S∗ΦJ1(s, 0)∗ΦJ2(r, 0)∗S−T

)
S∗S

(
S−1ΦJ2(r, 0)ΦJ1(s, 0)S

)
∆r∆s

= S∗
[∫

St
ΦJ1(s, 0)∗ΦJ1(s, 0)∆s

∫
St

ΦJ2(r, 0)∗ΦJ2(r, 0)∆r

]
S. (2.30)

We now use Lemma 2.1 and (2.25) to say

P = S∗
[∫

St
Φ∗J1

(s, 0)ΦJ1(s, 0)∆s

∫
St

Φ∗J2
(r, 0)ΦJ2(r, 0)∆r

]
S

= S∗
[(
−K−1

1 + E11

) (
−K−1

2 + E12

)]
S

= S∗
[
K−1

1 K−1
2 + E2

]
S, (2.31)

20

where E2 is defined as in (2.17c). Similarly

P σ = S∗
[
Kσ−1

1 Kσ−1

2 + E2σ
]
S. (2.32)

Inserting P and P σ from (2.31) and (2.32) into (2.10) for i = 1 and eliminating S

gives

1

µ
(I + µJ∗1)

[
Kσ−1

1 Kσ−1

2 + E2σ −K−1
1 K−1

2 − E2
]

(I + µJ1) +K−1
2 − E12 < 0.

(2.33)

We rearrange to obtain

1

µ
(I + µJ∗1)

[
Kσ−1

1 Kσ−1

2 −K−1
1 K−1

2 + E2σ − E2
]

(I + µJ1) < −K−1
2 + E12

Kσ−1

1 Kσ−1

2 −K−1
1 K−1

2 + E2σ − E2 < µ(I + µJ1)−∗
(
−K−1

2 + E12

)
(I + µJ1)−1

Kσ−1

1 Kσ−1

2 −K−1
1 K−1

2 < −µ(I + µJ1)−∗(I + µJ1)−1K−1
2 + E31, (2.34)

where E3 is defined as in (2.17d). Continuing,

Kσ−1

1 Kσ−1

2 −K−1
1 K−1

2 < −µ[(I + µJ1)(I + µJ∗1)]−1K−1
2 + E31

K1K2K
σ−1

1 Kσ−1

2 − I < −µ[(I + µJ1)(I + µJ∗1)]−1K1 +K1E31K2

K1K2K
σ−1

1 Kσ−1

2 < I − µ[(I + µJ1)(I + µJ∗1)]−1K1 +K1E31K2

K1K2K
σ−1

1 Kσ−1

2 < [(I + µJ1)(I + µJ∗1)− µK1][(I + µJ1)(I + µJ∗1)]−1

+K1E31K2. (2.35)

Multiplying (I + µJ1)(I + µJ∗1) out gives

(I + µJ1)(I + µJ∗1) = I + 2µ Re Λ1 + µ2Λ1Λ∗1 + µ(1 + µλ1)N∗ + µ(1 + µλ̄1)N

+ µ2NN∗

= I + µK1 + E41, (2.36)

21

where we define E4 as in (2.17e). Thus we have

K1K2K
σ−1

1 Kσ−1

2 < [I + µK1 + E41 − µK1][(I + µJ1)(I + µJ∗1)]−1 +K1E31K2

K1K2K
σ−1

1 Kσ−1

2 < [I + E41][(I + µJ1)(I + µJ∗1)]−1 +K1E31K2

K1K2K
σ−1

1 Kσ−1

2 < [(I + µJ1)(I + µJ∗1)]−1 + E41[(I + µJ1)(I + µJ∗1)]−1 +K1E31K2.

(2.37)

Let E5 be defined as in (2.17f). Then

K1K2K
σ−1

1 Kσ−1

2 < [(I + µJ1)(I + µJ∗1)]−1 + E51

K−1
1 K−1

2 Kσ
1K

σ
2 >

(
[(I + µJ1)(I + µJ∗1)]−1 + E51

)−1

K−1
1 K−1

2 Kσ
1K

σ
2 >

(
[I + µK1 + E41]−1 + E51

)−1

K−1
1 K−1

2 Kσ
1K

σ
2 >

(
[(I + µΛ∗1)(I + µΛ1) + E41]−1 + E51

)−1
. (2.38)

Similarly, i = 2 follows.

Recalling the diagonal case and the regionR defined by (2.2), we define a region

Rε given by (2.38) for i = 1, 2. Then we note that

lim
ε→0
Rε = R (2.39)

because

lim
ε→0

(
[(I + µΛ∗i)(I + µΛi) + E4i]

−1 + E5i
)−1

= (I + µΛ∗i)(I + µΛi). (2.40)

Applying this to (2.38) yields the set of inequalities for m = 2 in Theorem 2.1:

K−1
1 K−1

2 Kσ
1K

σ
2 > (I + µΛ∗i)(I + µΛi) for i = 1, 2. (2.41)

Thus, to guarantee stability of the switched linear system (2.1), it is sufficient

to show that {µ(t), µσ(t)} ∈ R, regardless of whether the system is simultaneously

diagonalizable or not, which is the essence of the theorem statement.

This is a favorable result, because R is significantly easier to compute than Rε.

We also note an interesting consequence of Theorem 2.1.

22

Corollary 2.1 (Unit Slope). Under arbitrary switching, the system (2.1) will remain

stable if µσ(t) ≤ µ(t) for all t ∈ T.

Proof. We can derive this result by looking at the scalar representation of each side

of (2.28) since everything is diagonal. The right-hand side has magnitude

|(I + µλ∗k)(I + µλk)| ≤ |(I + µλ∗k)||(I + µλk)| = |(I + µλk)|2 < 1 (2.42)

(where k is the index of all the eigenvalues of all the subsystems) because all the

eigenvalues are strictly within the Hilger circle for all t ∈ T by assumption A2. The

form of the left side is

m∏
k=1

(2 Re λk + µσ|λk|2)

(2 Re λk + µ|λk|2)
. (2.43)

Recall that the Hilger circle is on the negative real axis, meaning each eigenvalue has

negative real part. Thus, if µσ(t) ≤ µ(t), then

−(2 Re λk + µσ|λk|2) > −(2 Re λk + µ|λk|2). (2.44)

This implies ∣∣∣∣∣
m∏
k=1

(2 Re λk + µσ|λk|2)

(2 Re λk + µ|λk|2)

∣∣∣∣∣ ≥ 1 > |(I + µλk)|2. (2.45)

So, R always incudes the area µσ(t) ≤ µ(t) (i.e. below the 45◦ line where µ = µσ).

Examples

We use Matlab to generate several examples of the TRoS defined by both

(2.28) (R) and (2.10) (equivalent to Rε). The solution of the inequalities (2.28) as

if they were equalities yields a set of 2m polynomials (for each distinct eigenvalue).

m of them are outside the µmax limit imposed by A2. The minimum under the other

m define the TRoS R. The following figures are plots of µ vs. µσ containing the

polynomial curves just described, a µ = µσ line for reference, and either R or Rε.

23

The upper limits on the axes are µmax, which is the maximum graininess allowed by

assumption A2 (see R5).

R appears as a shaded region (under the curves) since it is defined analytically

by (2.28). Rε appears as an array of individual {µ, µσ} points which satisfy (2.10)

when checked numerically. Equations (2.10) and (2.38) are equivalent conditions (i.e.

the same {µ, µσ} pairs satisfy them). Note that Rε is more conservative and difficult

to compute than R because of the error terms on the right-hand side of (2.38), but

as stated in the proof of Theorem 2.1, Rε → R as ε→ 0.

Example 1

Let

A1 =


−1.6 ε 0

0 −1.6 ε

0 0 −1.6

 , A2 =


−0.4 ε 0

0 −0.4 ε

0 0 −0.4

 ,
which are already in irreducible, Jordan epsilon form. Figure 2.1 is a plot of R, the

area given by (2.28). Note that the region is upper-bounded by the minimum of the

two curves. Each point in Figures 2.2-2.4 represents a {µ, µσ} pair which satisfies

(2.10). Notice that as ε → 0, Rε → R, just as stated in the proof of Theorem 2.1.

Figure 2.4 also demonstrates that (2.28) is equivalent to (2.10) in the limit as ε→ 0

and can be used to establish stability of the system (2.1).

Example 2

Let

A1 =


−0.7 ε1 0

0 −0.7 0

0 0 −1.1

 , A2 =


−1.4 ε2 0

0 −1.4 0

0 0 −1.4

 ,
which is also in Jordan epsilon form. Figures 2.5-2.8 are similar to those in Example

1.

24

0 0.2 0.4 0.6 0.8 1 1.2
0

0.2

0.4

0.6

0.8

1

1.2

µ

µσ

µ vs. µσ

Figure 2.1. R (for ε = 0.3.)

0 0.2 0.4 0.6 0.8 1 1.2
0

0.2

0.4

0.6

0.8

1

1.2

µ

µσ

µ vs. µσ

Figure 2.2. Rε for ε = 0.3.

0 0.2 0.4 0.6 0.8 1 1.2
0

0.2

0.4

0.6

0.8

1

1.2

µ

µσ

µ vs. µσ

Figure 2.3. Rε for ε = 0.3× 10−5.

0 0.2 0.4 0.6 0.8 1 1.2
0

0.2

0.4

0.6

0.8

1

1.2

µ

µσ

µ vs. µσ

Figure 2.4. Rε for ε = 0.3× 10−15.

Example 3

Let

A1 =

−0.522421 −0.444784

0.123072 −1.3577

 , A2 =

−0.750658 −0.169227

0.0468251 −1.06846

 ,
which are randomly generated, commuting, diagonalizable matrices. Since they are

diagonalizable, Rε = R and R is given by the diagonal case (2.2). Figure 2.9 is a

plot of R, while Figure 2.10 is a plot of the region given by (2.10). Theoretically,

these regions should be the same. However, the regions in Figures 2.9 and 2.10 are

not equivalent because the “infinite” sums required in (2.7) and (2.8) were truncated

25

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.2

0.4

0.6

0.8

1

1.2

1.4

µ

µσ

µ vs. µσ

Figure 2.5. R (for ε1 = 0.2 and ε2 =
0.1.)

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.2

0.4

0.6

0.8

1

1.2

1.4

µ

µσ

µ vs. µσ

Figure 2.6. Rε for ε1 = 0.2 and ε2 = 0.1.

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.2

0.4

0.6

0.8

1

1.2

1.4

µ

µσ

µ vs. µσ

Figure 2.7. Rε for ε1 = 0.2× 10−5 and
ε2 = 0.1× 10−5.

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.2

0.4

0.6

0.8

1

1.2

1.4

µ

µσ

µ vs. µσ

Figure 2.8. Rε for ε1 = 0.2× 10−15 and
ε2 = 0.1× 10−15.

0 0.5 1 1.5
0

0.5

1

1.5

µ

µσ

µ vs. µσ

Figure 2.9. R given analytically by (2.2).

0 0.5 1 1.5
0

0.5

1

1.5

µ

µσ

µ vs. µσ

Figure 2.10. Region given by numerical
computation of (2.10).

26

at 1000 terms for computational efficiency. This highlights the point that (2.28) is

much easier to compute than (2.10).

27

CHAPTER THREE

Application to Controller Area Network

Introduction and CAN

While Chapter 2 focused on the general problem of system stability, this chapter

will focus on a specific application of those results. We begin by noting that many

industrial and automotive systems use discrete controllers which communicate with

various sensors and actuators via a single real time network. One common protocol is

the Controller Area Network (CAN). We will use the this as our motivation, although

the ideas presented here are not limited to CAN systems.

Plant

AN SN AN SN

CN CN

Bus

Figure 3.1. CAN network diagram with sensor nodes (SN), actuator
nodes (AN), and controller nodes (CN).

Figure 3.1 shows a typical arrangement of nodes on a CAN bus. There are

three types of nodes in the network: controllers, sensors, and actuators. Each node

receives all of the messages that are transmitted on the bus and simply filters out the

ones that are addressed to it. The messages are comprised of an identifier followed

by the actual data. The identifier specifies which node the message is for, the type

of data in the message, and the priority of the message. If a message collision (two

28

nodes trying to transmit at the same time) occurs, the higher priority message will

be allowed to transmit first.

A control loop can be implemented on the network, which at its most basic,

involves a control node polling one or more sensors, the sensors responding, and the

controller calculating new actuator values and transmitting these to one or more ac-

tuators. While this is a typical closed-loop feedback system with a specified sampling

period, there are also sporadic high-speed, high-priority messages that need to be

handled. These come from (often random) events which trigger a sensor, such as

depressing the brake pedal in a car or a robot hand making contact with an object.

They are termed high-speed because they have (possibly very tight) deadlines and

must be processed within those deadlines.

One method of handling these sporadic messages is to allow more time (i.e.

increase the sampling period) between the periodic messages. This deceases the

robustness of the control-loop, however. An alternative tactic is to use adaptive

sampling, meaning we can adjust the sampling period “on-the-fly.” This allows for

short periods of high-speed sporadic traffic but maintains system integrity. This type

of adaptive control is the focus of [14].

We begin by describing (mathematically) the system using the discretization

method from Chapter 1. We then discuss the role of commutativity under the switch-

ing constraint and present the main theorem, which is very similar (as should be

expected) to Theorem 2.1. We conclude with several examples of systems and their

corresponding TRoS’s.

Problem Setup

Consider the linear system of the form

ẋ = Ax+Bu, A ∈ Rn×n, B ∈ Rn×p (3.1)

u = Kx, K ∈ Rp×n. (3.2)

29

(Note that K without a subscript always denotes the feedback gain matrix defined

here.) Similar to Chapter 1, we can discretize this system (as was done in [14]) by

x∆(t) = A(µ(t))x(t) (3.3)

where

A(µ(t)) := expc(µ(t)A)(A+BK). (3.4)

Designating a finite number of choices of µ yields the set {µ1, µ2, . . . , µm} ∈ R+

(positive real numbers) and a corresponding set of matrices {A1,A2, . . . ,Am} ∈ Rn×n

with switching signal c : {µi} → {1, 2, . . . ,m}. The switched system is then

x∆(t) = Ac(t)x(t), t ∈ T, t ≥ 0 and x(0) = x0. (3.5)

We modify the assumptions from Chapter 2 as follows:

A1 The switching signal c is constrained as c : {µi} → {1, 2, . . . ,m}.

A2 The eigenvalues of all of the Ai are strictly within the smallest Hilger circle
of the set {µ1, µ2, . . . , µm}. (This means each Ai is stable with respect to the
time scale T.)

A3 Each Ai is regressive. (Meaning that (I + µiAi)−1 exists ∀ t ∈ T.)

A4 The family {Ai} is pairwise commutative, i.e. AiAj = AjAi ∀ i, j. Note: it
can be shown that, if A and BK commute, then all of the Ai commute (see
below).

A5 T has the following properties: (i) 0 ∈ T, (ii) T is unbounded above, (iii) T
has graininess 0 < µmin ≤ µi ≤ µmax for i = 1, 2, 3, . . . ,m.

Note that A2-A5 are very similar to those from Chapter 2. A1 has changed to indicate

a switching constraint.

Commutativity

One question that arises is: “What is the requirement for a set of subsystem

matrices Ai to be commutative?” There are two parts to the answer. First, from the

30

definitions (3.4) and (1.7), we can show that

AiAj = expc(µiA)(A+BK)expc(µjA)(A+BK)

=

(
I +

1

2
µiA+ . . .

)
(A+BK)

(
I +

1

2
µjA+ . . .

)
(A+BK) (3.6a)

=

(
(A+BK) +

1

2
µiA(A+BK) + . . .

)(
I +

1

2
µjA+ . . .

)
(A+BK) (3.6b)

= (A+BK)

(
I +

1

2
µiA+ . . .

)(
I +

1

2
µjA+ . . .

)
(A+BK) (3.6c)

= (A+BK)

(
I +

1

2
µjA+ . . .

)(
I +

1

2
µiA+ . . .

)
(A+BK) (3.6d)

=

(
(A+BK) +

1

2
µj(A+BK)A+ . . .

)(
I +

1

2
µiA+ . . .

)
(A+BK) (3.6e)

=

(
I +

1

2
µjA+ . . .

)
(A+BK)

(
I +

1

2
µiA+ . . .

)
(A+BK) (3.6f)

= AjAi (3.6g)

Due to the form of (3.6a), we get commutativity if we swap the first and third terms.

To do this, we need A and BK to commute. If they do, then we can make the step

from (3.6b) to (3.6c). We can swap the middle terms of (3.6c) because they both

contain only powers of A and µi and µj are simply scalars. This gives (3.6d). Moving

from (3.6d) to (3.6e) again requires that A and BK commute. Assuming they do, we

then get the result in (3.6g), which shows that Ai and Aj commute.

Next, if A and BK commute, then ABK + BKA = 0. To simplify things, let

X := BK. We can now vectorize and use the properties of Kronecker products to

say

(AT ⊗k I)vec X − (I ⊗k A)vec X = 0[
(AT ⊗k I)− (I ⊗k A)

]
vec X = 0[

(−AT ⊗k I) + (I ⊗k A)
]

vec X = 0

(AT ⊕k A)vec X = 0 (3.7)

31

where ⊗k and ⊕k are the Kronecker product and Kronecker sum, respectively. The

Kronecker sum is defined as

(−AT ⊕k A) :=
[
(−AT ⊗k I) + (I ⊗k A)

]
. (3.8)

Let X = BK, then (3.7) becomes

(−AT ⊕k A)(I ⊗k B)vec K = 0. (3.9)

Thus, A and BK will commute if and only if vec K is in the null space of the first

two terms [11]. (3.9) is a solvable equation which produces a commuting A and BK.

Note that K is not uniquely defined by (3.9). We can use this freedom to specify a

set of desired eigenvalues for A + BK and then have an algorithm choose K to put

the eigenvalues of A+BK as close to the desired set as possible.

Constrained Temporal Region of Stability

Before presenting Theorem 3.1 (a modified version of Theorem 2.1), we need

to note two things. First, the primary difference between 3.1 and 2.1 is that each

{µi, µj} pairs with a specific {Ai,Aj}. Notice that the indices of the A’s and the µ’s

are coupled. This follows from the problem setup (A1) and yields a system which

switches coefficients depending on the current graininess. This means we can change

the behavior of the system (and the region of stability) based on both our choice (or

what is given to us) of A, B, and K as well as our choice of µi’s.

We also need to modify the definition of Ki given in (2.25) so that

Ki,k := 2 Re Λi + µkΛ
∗
iΛi. (3.10)

Note that K−1
i,k always exists because Ki,k is diagonal and has non-zero eigenvalues as

a result of A2, just as it did in (2.25). We can now state the theorem.

Theorem 3.1 (Constrained TRoS). Under assumptions A1-A5, given a set of matrices

Ai = S−1JiS for 1 ≤ i ≤ m where the Ji are Jordan-epsilon form matrices with

32

Ji = Λi + N and S is a simultaneous similarity transform, there exists a region

Rc ∈ R2 consisting of pairs {µi, µj} such that

m∏
k=1

K−1
k,iKk,j > (I + µiΛ

∗
i)(I + µiΛi), ∀ i, j = 1, . . . ,m (3.11)

with 0 < µmin ≤ µi ≤ µmax for all t ∈ T.

A full proof of this theorem can be found in Appendix A and is very similar to

the proof for Theorem 2.1.

Examples

Whereas in Theorem 2.1 we found continuous TRoS’s with upper bounds de-

fined by the equality of (2.28), in this case, continuous regions do not have any

meaning, only discrete points corresponding to values for µi. The following figures

have black (or dark) +’s where the inequality of (3.11) is satisfied (i.e. “valid” points),

and red (or light) o’s where it is not. Similar to the general case, the upper limits

on the TRoS plots are equal to µmax. Note that µmax is essentially the same as in

the general case but must be calculated slightly differently because the Ai now vary

depending on the choice of µi.

We use Matlab to generate random, commuting, non-diagonal A,B ∈ R3×3

pairs, and then calculate K (also in R3×3) according to (3.9) and a user specified (but

arbitrarily chosen) set of desired eigenvalues of A + BK. Each example has three

distinct eigenvalues. The eigenvalues of A have a positive real part, while the desired

(and actual) eigenvalues of A + BK have a negative real part. Note that all of the

following figures are most easily viewed in color.

Example 1

Figure 3.2 is a plot of the eigenvalues of A and A + BK and the Hilger circle

corresponding to µmax for A+BK. The desired eigenvalues were [−1.9,−1.2± 0.3i].

Figures 3.3a, 3.4a, and 3.5a show that the region changes based on choices of µi,

33

both the number of choices and the values of those choices. For example, {0.3, 0.45}

(approximately) is not a valid point in either of the first two plots, but is valid in the

third. The corresponding figures 3.3b, 3.4b, and 3.5b demonstrate how the eigenvalues

of the Ai’s change with various choices of µi. The Hilger circle encompassing all

eigenvalues (corresponding to µmax for the system) is also plotted in each right-hand

figure.

It is important to note that valid points above the µi = µj line allow for more

flexibility in the system. These points mean that the graininess can “upshift,” or

increase. With no valid points above the diagonal, the system is “trapped” and

cannot increase the graininess. For example, if the system described in Figure 3.3

started with µ1 ≈ 0.15, it could only decrease the graininess (i.e. “downshift”) or stay

at approximately 0.15. If it decreased, it could never return to 0.15. The systems

described by figures 3.4 and 3.5, however, have complete freedom. Intermediate steps

may be required, but they can upshift or downshift to reach every allowable graininess.

Example 2

Figures 3.6-3.9 are the same as Example 1, but with a different A, B, and K.

Note that the algorithm for calculating K put the eigenvalues of A+BK as close to

the desired values [−1.9,−1.2± 0.3i] as possible.

Example 3

Figures 3.10-3.13 are very similar to Examples 1 and 2, but with a different A,

B, K, and desired eigenvalues [−0.3,−0.4± 0.1i].

34

−2 −1.5 −1 −0.5 0 0.5 1 1.5

−1.5

−1

−0.5

0

0.5

1

1.5

System Eigenvalues

µ
max

 = 1.05263

µ
max

A
A+BK

Figure 3.2. Eigenvalues of A and A+BK for Example 1.

0 0.1 0.2 0.3 0.4 0.5 0.6
0

0.1

0.2

0.3

0.4

0.5

0.6

µ
i

µ j

(a)

−3 −2.5 −2 −1.5 −1 −0.5 0

−1

−0.5

0

0.5

1

System Eigenvalues

µ
max

 = 0.667902

µ

max

A
1

A
2

A
3

A
4

A
5

A
6

A
7

A
8

A
9

A
10

(b)

Figure 3.3. Rc for µi < µmax and i = {1, . . . , 10}.

0 0.1 0.2 0.3 0.4 0.5 0.6
0

0.1

0.2

0.3

0.4

0.5

0.6

µ
i

µ j

(a)

−2.5 −2 −1.5 −1 −0.5 0

−1

−0.5

0

0.5

1

System Eigenvalues

µ
max

 = 0.752525

µ

max

A
1

A
2

A
3

A
4

A
5

A
6

A
7

A
8

A
9

A
10

(b)

Figure 3.4. Rc for .25µmax < µi ≤ .75µmax and i = {1, . . . , 10}.

35

0 0.1 0.2 0.3 0.4 0.5 0.6
0

0.1

0.2

0.3

0.4

0.5

0.6

µ
i

µ j

(a)

−2.5 −2 −1.5 −1 −0.5 0

−1

−0.5

0

0.5

1

System Eigenvalues

µ
max

 = 0.742739

µ

max

A
1

A
2

A
3

A
4

A
5

A
6

(b)

Figure 3.5. Rc for µi < µmax and i = {3, . . . , 8}.

−2 −1.5 −1 −0.5 0 0.5 1 1.5

−1.5

−1

−0.5

0

0.5

1

1.5

System Eigenvalues

µ
max

 = 1.29005

µ
max

A
A+BK

Figure 3.6. Eigenvalues of A and A+BK for Example 2.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

µ
i

µ j

(a)

−2.5 −2 −1.5 −1 −0.5 0

−1

−0.5

0

0.5

1

System Eigenvalues

µ
max

 = 0.7832

µ

max

A
1

A
2

A
3

A
4

A
5

A
6

A
7

A
8

A
9

A
10

(b)

Figure 3.7. Rc for µi < µmax and i = {1, . . . , 10}.

36

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

µ
i

µ j

(a)

−2 −1.5 −1 −0.5 0

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

System Eigenvalues

µ
max

 = 0.89869

µ

max

A
1

A
2

A
3

A
4

A
5

A
6

A
7

A
8

A
9

A
10

(b)

Figure 3.8. Rc for .25µmax < µi ≤ .75µmax and i = {1, . . . , 10}.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

µ
i

µ j

(a)

−2 −1.5 −1 −0.5 0

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

System Eigenvalues

µ
max

 = 0.885467

µ

max

A
1

A
2

A
3

A
4

A
5

A
6

(b)

Figure 3.9. Rc for µi < µmax and i = {3, . . . , 8}.

−2 −1.5 −1 −0.5 0 0.5 1 1.5

−1.5

−1

−0.5

0

0.5

1

1.5

System Eigenvalues

µ
max

 = 1.05264

µ
max

A
A+BK

Figure 3.10. Eigenvalues of A and A+BK for Example 3.

37

0 0.5 1 1.5
0

0.5

1

1.5

µ
i

µ j

(a)

−1.2 −1 −0.8 −0.6 −0.4 −0.2 0

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

System Eigenvalues

µ
max

 = 1.52955

µ

max

A
1

A
2

A
3

A
4

A
5

A
6

A
7

A
8

A
9

A
10

(b)

Figure 3.11. Rc for µi < µmax and i = {1, . . . , 10}.

0 0.5 1 1.5
0

0.5

1

1.5

µ
i

µ j

(a)

−0.8 −0.6 −0.4 −0.2 0

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

System Eigenvalues

µ
max

 = 2.12795

µ

max

A
1

A
2

A
3

A
4

A
5

A
6

A
7

A
8

A
9

A
10

(b)

Figure 3.12. Rc for .25µmax < µi ≤ .75µmax and i = {1, . . . , 10}.

0 0.5 1 1.5
0

0.5

1

1.5

µ
i

µ j

(a)

−0.8 −0.6 −0.4 −0.2 0

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

System Eigenvalues

µ
max

 = 2.05507

µ

max

A
1

A
2

A
3

A
4

A
5

A
6

(b)

Figure 3.13. Rc for µi < µmax and i = {3, . . . , 8}.

38

CHAPTER FOUR

Conclusions

General Conclusions

The goal of this thesis was to investigate the stability of switched linear systems

with non-diagonalizable system matrices on non-uniform discrete time domains. This

focus arose out of a desire to study dynamic systems that operate on time domains

other than R or Z, such as those found in distributed control systems. What we found

was that placing a condition on the time domain (i.e. time scale) itself allowed us to

guarantee stability of a class of these systems, namely those with commuting system

matrices. But a few things can be said about the criteria we established.

First, we wanted a non-diagonalizable solution and found one. This is good

news as, often, matrices cannot be completely diagonalized. Second, we can treat

a non-diagonalizable system as if it were diagonalizable from the point of view of

the TRoS. This simplifies the calculations, making it easier to compute the temporal

region of stability (TRoS). In particular, this might be the key to being able to

implement a process based on these results in an embedded microcontroller instead

of a sophisticated piece of software like Matlab . One application of this would

be allowing the microcontroller to determine when the next sampling period should

occur based on the previous sampling period(s), thus, in effect, designing the time

scale in real-time. An example of this type of adaptive sampling technique (based on

different criteria) is presented in [14].

The third point to make is that Lyapunov methods, and thus our regions, are

very conservative. While the TRoS’s that we present are sufficient, they are by no

means necessary. Figure 4.1 and Figure 4.2 both show stable systems, but the system

in Figure 4.2 is operating with µ’s outside the TRoS. Note that, because µ ≤ µmax,

39

we must eventually choose a point within the region, hence the marks in the lower,

right-hand corner. In other words, we stay outside the region as long as possible,

but are eventually forced back inside. Figure 4.3 shows that we can cause systems

to be unstable, but it is significantly outside the TRoS, and in fact, outside the µmax

limit for stability of each sub-system. In other words, while the mathematics allow

us to guarantee stability within the TRoS, all numerical examples have thus far only

required stability of each sub-system (i.e. assumption A2). (Figures 4.1-4.3 were

generated in Matlab using work done in [6]).

The final note about Chapter 2 we want to make is that our assumptions are

fairly restrictive. Dynamical systems that can be described by switched LTI systems

with commuting matrices form a very restrictive class of systems.

In Chapter 3, we applied the general results of Chapter 2 to a constrained

switching case, where the active system matrix was dictated by the graininess. We

were able to determine point-wise whether a certain switching pair (i.e. from µ1 to µ2)

was valid or not, yielding a region of discrete points where stability was guaranteed.

Just as we did above, we want to make a few notes about these findings.

First, we note that the fewer µ points (values) we use, the “better” our TRoS.

By this, we mean that fewer choices of µi lead to a larger relative area of {µi, µj}

pairs which satisfy the inequality in Theorem 3.1. This makes some intuitive sense

in that more points means more systems, and more systems means more conditions

that have to be met in order to guarantee stability. The second item we highlight

is that the TRoS also depends on the values of the graininess µi. Again, this is

somewhat intuitive because the inequalities defining the TRoS take into account all

of the systems. Since each system has different eigenvalues and the eigenvalues play a

crucial role in determining stability, including systems which have “bad” eigenvalues

will constrain the region more.

40

0 5 10 15 20 25 30
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

t

x(
t)

(a)

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

µ

µσ

µ vs. µσ

(b)

Figure 4.1. Stable system with {µ, µσ} ∈ R. Each “+” represents a
{µ, µσ} ∈ T.

0 5 10 15 20 25 30
−0.5

0

0.5

1

t

x(
t)

(a)

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

µ

µσ

µ vs. µσ

(b)

Figure 4.2. Stable system with µ ≤ µmax.

0 10 20 30 40 50 60 70
−250

−200

−150

−100

−50

0

50

100

150

200

250

t

x(
t)

(a)

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

µ

µσ

µ vs. µσ

(b)

Figure 4.3. Unstable system with µ ≤ 2µmax.

41

The final point we want to make about all of these results is that they are really

building blocks for further study. Because this analysis is so conservative, we need

to look for stability criteria that are less restrictive. To this end, we next pose some

possible avenues of future research.

Open Questions

The first question we ask is: what about other constrained switching problems?

While we present results for the general case and one specific constrained switching

problem, there are (theoretically infinitely) many such constrained problems. Finding

others which manifest themselves in practice and analyzing them could prove fruitful.

Next, what happens if we allow the system to get outside of the TRoS? We saw

in the previous section that these regions are quite conservative. If we do allow the

system to go outside, can we say anything about whether it is stable or not? This

was part of the premise of [14], which presents results along the lines of Chapter 3;

although they are somewhat different. One item presented in [14], which was not in

Chapter 3, is a metric to determine the “average” stability of the system. This yields

a sub-question: what can we use as a metric for determining “average” stability?

Finally, what happens if we relax other constraints? For example, if we remove

instantaneous stability of each sub-system, can we impose a switching mechanism

that still maintains stability with out completely avoiding the unstable sub-systems?

Likely, there are constraints that we can relax in order to better model real systems.

42

APPENDICES

43

APPENDIX A

Constrained Temporal Region of Stability

To investigate stability of (3.5), we define a Lyapunov candidate

V = xTPx (A.1)

where P = P T > 0. To ensure stability, we need

V ∆ < 0

⇒ ATi P + PAi + µiATi PAi + (I + µiATi)P∆(I + µiAi) < 0. (A.2)

We now set

ATi P + PAi + µiATi PAi = −Mi, (A.3)

where Mi = MT
i > 0 and solve for P . It can be shown [22] that P solves (A.3) for all

i if

P (t) =

∫
St

ΦT
Ai(s, 0)Mi(t)ΦAi(s, 0)∆s (A.4)

and (leaving (s, 0) off each ΦA term to shorten the equation)

Mi(t) =

∫
St

ΦT
A1
. . .

∫
St

ΦT
Aj . . .

∫
St

ΦT
AmQ(t)ΦAm∆sm . . .ΦAj∆sj . . .ΦA1∆s1, ∀ j 6= i

(A.5)

where St = µiN0, Q = QT > 0 is an arbitrary ”seed” matrix, and ΦAk(s, 0) is the

transition matrix that solves y∆(s) = Aky(s) with s ∈ St and an initial condition

y(0) = y0. For each µi, St is a constant-graininess time scale, so

ΦAk(sk, 0) = eAk(sk, 0) = (I + µiAk)
sk
µi . (A.6)

Note that s is subscripted with the index k for the system it belongs to but really

depends on graininess i, which might be different from k. Substituting (A.3) into

(A.2) yields

(I + µiATi)P∆(I + µiAi)−Mi < 0, for t ∈ T (A.7)

44

where P∆ =
Pj−Pi
µi

. Note that the only terms in (A.7) which depend on t are µi and

µj.

Substituting (A.5) into (A.4), we get

P =

∫
St

ΦT
Ai

(si, 0)MiΦAi(si, 0)∆si

=

∫
St

ΦT
Ai

(si, 0)

(∫
St

ΦT
Aj

(sj, 0) . . . Q . . .ΦAj(sj, 0)∆sj

)
ΦAi(si, 0)∆si

=

∫
St

∫
St

ΦT
Ai

(si, 0)ΦT
Aj

(sj, 0) . . . Q . . .ΦAj(sj, 0)ΦAi(si, 0)∆sj∆si. (A.8)

Since Q in (A.5) may be any arbitrary, positive definite matrix, we choose Q =

S∗S, where S is the simultaneous Jordan epsilon similarity transform and ∗ denotes

conjugate transpose. Substituting this and applying the Jordan epsilon similarity

transform Ai = S−1JiS to (A.8) gives

P =

∫
St

∫
St

(
S∗Φ∗Ji(si, 0)Φ∗Jj(sj, 0) . . . S−∗

)
S∗S

(
S−1 . . .ΦJj(sj, 0)ΦJi(si, 0)S

)
∆sj∆si

= S∗
[∫

St
Φ∗Ji(si, 0)ΦJi(si, 0)∆si

∫
St

Φ∗Jj(sj, 0)ΦJj(sj, 0)∆sj . . .

]
S. (A.9)

For m = 2, we use Lemma 2.1 (2.18) and the definition of Ki,k (3.10) to say

Pi = S∗
[∫

St
Φ∗J1

(s1, 0)ΦJ1(s1, 0)∆s1

∫
St

Φ∗J2
(s2, 0)ΦJ2(s2, 0)∆s2

]
S

= S∗
[(
−K−1

1,i + E11,i

) (
−K−1

2,i + E12,i

)]
S

= S∗
[
K−1

1,iK
−1
2,i + E2i

]
S, (A.10)

where E1k and E2k are defined as in (2.17b) and (2.17c) except µ is now µk. Similarly

Pj = S∗
[
K−1

1,jK
−1
2,j + E2j

]
S. (A.11)

Inserting Pi and Pj from (A.10) and (A.11) into (A.7) and eliminating S gives

1

µi
(I + µiJi)

∗ [K−1
1,jK

−1
2,j + E2j −K−1

1,iK
−1
2,i − E2i

]
(I + µiJi) +K−1

j,i − E1j,i < 0.

(A.12)

45

We rearrange to obtain

1

µi
(I + µiJi)

∗ [K−1
1,jK

−1
2,j −K−1

1,iK
−1
2,i + E2j − E2i

]
(I + µiJi) < −K−1

j,i + E1j,i

K−1
1,jK

−1
2,j −K−1

1,iK
−1
2,i + E2j − E2i < µi(I + µiJi)

−∗ (−K−1
j,i + E1j,i

)
(I + µiJi)

−1

K−1
1,jK

−1
2,j −K−1

1,iK
−1
2,i < −µi(I + µiJi)

−∗(I + µiJi)
−1K−1

j,i + E3i,i,

(A.13)

where E3i,k is defined as in (2.17d) except µ is now µk and µσ is µj. Continuing,

K−1
1,jK

−1
2,j −K−1

1,iK
−1
2,i < −µi[(I + µiJi)(I + µiJ

∗
i)]−1K−1

j,i + E3i,i

K1,iK2,iK
−1
1,jK

−1
2,j − I < −µi[(I + µiJi)(I + µiJ

∗
i)]−1Ki,i +Ki,iE3i,iKj,i

K1,iK2,iK
−1
1,jK

−1
2,j < I − µi[(I + µiJi)(I + µiJ

∗
i)]−1Ki,i +Ki,iE3i,iKj,i

K1,iK2,iK
−1
1,jK

−1
2,j < [(I + µiJi)(I + µiJ

∗
i)− µiKi,i][(I + µiJi)(I + µiJ

∗
i)]−1

+Ki,iE3i,iKj,i. (A.14)

Multiplying (I + µiJi)(I + µiJ
∗
i) out gives

(I + µiJi)(I + µiJ
∗
i) = I + 2µi Re Λi + µ2

iΛiΛ
∗
i + µi(1 + µiλi)N

∗ + µi(1 + µiλ̄i)N

+ µ2
iNN

∗

= I + µiKi,i + E4i,i, (A.15)

where we define E4 as in (2.17e) with the same exception as previously. Thus we

have

K1,iK2,iK
−1
1,jK

−1
2,j < [I + µiKi,i + E4i,i − µiKi,i][(I + µiJi)(I + µiJ

∗
i)]−1

+Ki,iE3i,iKj,i

K1,iK2,iK
−1
1,jK

−1
2,j < [I + E4i,i][(I + µiJi)(I + µiJ

∗
i)]−1 +Ki,iE3i,iKj,i

K1,iK2,iK
−1
1,jK

−1
2,j < [(I + µiJi)(I + µiJ

∗
i)]−1 + E4i,i[(I + µiJi)(I + µiJ

∗
i)]−1

+Ki,iE3i,iKj,i. (A.16)

46

Let E5 be defined as in (2.17f) with the usual exception. Then

K1,iK2,iK
−1
1,jK

−1
2,j < [(I + µiJi)(I + µiJ

∗
i)]−1 + E5i,i

K−1
1,iK

−1
2,iK1,jK2,j >

(
[(I + µiJi)(I + µiJ

∗
i)]−1 + E5i,i

)−1

K−1
1,iK

−1
2,iK1,jK2,j >

(
[I + µiKi,i + E4i,i]

−1 + E5i,i
)−1

K−1
1,iK

−1
2,iK1,jK2,j >

(
[(I + µiΛ

∗
i)(I + µiΛi) + E4i,i]

−1 + E5i,i
)−1

. (A.17)

We define a region Rcε given by (A.17) for i = 1, 2. Then we note that

lim
ε→0
Rcε = Rc (A.18)

because

lim
ε→0

(
[(I + µiΛ

∗
i)(I + µiΛi) + E4i,i]

−1 + E5i,i
)−1

= (I + µiΛ
∗
i)(I + µiΛi). (A.19)

Applying this to (A.17) yields the set of equations in Theorem 3.1 for m = 2:

K−1
1,iK

−1
2,iK1,jK2,j > (I + µiΛ

∗
i)(I + µiΛi) for i, j = 1, 2. (A.20)

This can be generalized for m > 2 to get the statement of Theorem 3.1. Thus,

to guarantee stability of the switched linear system (3.1), it is sufficient to show that

{µi, µj} ∈ Rc, regardless of whether the system is simultaneously diagonalizable or

not, which is the essence of the theorem statement.

47

APPENDIX B

Matlab Function Reference

This appendix contains the documented source code for the primary Matlab

m-files used to generate examples in this thesis. The following is a list of these files,

which then appear in the same order:

muregion.m Plots the general TRoS and boundary curves.

mubounds.m Calculates the boundary curves for the general TRoS.

BWmuregion.m Plots the discrete TRoS for the constrained problem.

inside bound.m Simulates a system with choices of µ inside the TRoS.

violate bound.m Simulates a system with choices of µ outside the TRoS.

muregion.m

function varargout = muregion(A,method,varargin)
%MUREGION Plots mu/mu_sigma bounds/regions.
% MUREGION plots the analytic or numeric ("brute force") mu/mu_sigma
% region. The analytic version computes the polynomial bounds and
% shades the region under their minimum. The numeric version
% approximates the region numerically.
%
% MUREGION(A,’a’) plots the analytic mu/mu_sigma region for A.
% MUREGION(A,’n’) plots the numeric mu/mu_sigma region for A.
% MUREGION(A,’n’,...) plots the numeric mu/mu_sigma region for
% A and uses other specified parameter/value pairs (see below).
%
% Required inputs:
% A - a cell array of system matrices (num_sys x 1)
% METHOD - compute region using analytic (’a’) or numeric (’n’)
% method
% Optional inputs: (specified as ’parameter’,value) {default}
% ’mu’ - vector of mu/mu_sigma points to use (see muvec) {muvec(A)}
% ’terms’ - number of terms to use to approximate infinity {100}
% ’Q’ - seed matrix for M (must be same size as A{1}) {V’*V}
% ’bounds’ - cell array containing vectors of boundary

48

% curves {calc}
% ’bounds_method’ - either ’s’ or a number of points at
% which to evaluate mu_sigma numerically
% {follows METHOD, i.e. ’a’->’s’}
% ’num_zero’ - "numerical zero" offset for inequality
% checking near 0 {0}
% Optional outputs:
% BOUNDS - cell array containing vectors of boundary curves
% (see MUBOUNDS)
% HBOUNDS - vector of handles to boundary curves
% NAMES - vector of names of each boundary curve (given as
% A{sys#},{eigenvalue#}{pos/neg} e.g. A1,2+)
% P - the output of TSALE_SOLVE (a cell array)
%
% See also MUREGIONGUI, MUBOUNDS, MUVEC, PLOT_MUBOUNDS, TSALE_SOLVE,
% TIMESCALE, BWMUREGION.
%
% Calls: tsale_solve muvec
% timescale mubounds
% plot_mubounds
%
% John Miller, 2/16/09

%% Check Inputs

if(isempty(A)), error(’A is empty.’), end
if(size(A{1},1) ~= size(A{1},2)), error(’A{1} is not square’), end
if(method ~= ’a’ && method ~= ’n’)

error(’VER must = ’’a’’ or ’’n’’’)
end
if(mod(nargin,2) ~= 0)

error([’Optional arguments must be supplied’...
’in ’’parameter’’,value pairs.’])

end

% Determine optional inputs
for n=1:2:nargin-2

switch varargin{n}
case ’mu’

mu = varargin{n+1};
case ’terms’

terms = varargin{n+1};
case ’Q’

Q = varargin{n+1};
case ’bounds’

bounds = varargin{n+1};
case ’bounds_method’

49

bounds_method = varargin{n+1};
case ’num_zero’

num_zero = varargin{n+1};
end

end

% Set default values if not set by user
if(~exist(’mu’,’var’)), mu = muvec(A); end
if(~exist(’terms’,’var’)), terms = 100; end
if(~exist(’Q’,’var’))

% Calc Q from diagonalization of A
[S,J] = eig(A{1});
Q = S’*S;

end
if(~exist(’bounds_method’,’var’))

% Determine mubounds method from region method
if(method == ’a’), bounds_method = ’s’;
else bounds_method = 100; end

end
if(~exist(’num_zero’,’var’)), num_zero = 0; end

%% Bounds
% Calculate bounds if they don’t exist
if(~exist(’bounds’,’var’))

[minBound, bounds] = mubounds(A,mu,’method’,bounds_method);
else

% Calculate minimum if bounds were input
minBound = max(mu)*ones(1,length(mu));
for n=1:numel(bounds)

minBound = min([minBound; bounds{n}]);
end

end

% Plot bounds
[hBounds, names] = plot_mubounds(mu,bounds);

%% Region
hold on

% Fill region based on user input (analytic or numeric)
if(method == ’n’)

% Calc via numeric method
P = numeric(A,mu,terms,Q,num_zero);

else
% Fill temporal region (analytic)
fill([mu,mu(end),mu(1)],[minBound,0,0],’r’)

end

50

hold off

% Determine desired outputs
if nargout == 1, varargout = {bounds}; end
if nargout == 2, varargout = {bounds, hBounds}; end
if nargout == 3, varargout = {bounds, hBounds, names}; end
if nargout == 4, varargout = {bounds, hBounds, names, P}; end

%% =========================== Sub-functions ==============================

% --- NUMERIC ---
function P = numeric(A,mu,terms,Q,num_zero)

% Get parameters
num_sys = length(A); dim = length(A{1});

% Identity matrix definition
I = eye(dim);

% Initialize mu_sigma vector
mu_sig = mu;

% Initialize arrays
M = cell(num_sys,1);
B = cell(num_sys,length(mu),length(mu_sig));
B_evmax = zeros(length(mu),length(mu_sig));
area = cell(size(B_evmax));

% Create timescale with intervals based on mu’s
ts_data = zeros(1,length(mu)+1);
for t=1:length(mu)

ts_data(t+1) = ts_data(t)+mu(t);
end
T = timescale(ts_data,’d’);

% Calc M_n(mu) using integral method
% Note: A’s index grabs all but nth matrix
for n=1:num_sys

M{n} = tsale_solve(A((1:num_sys)~=n) ,Q,T,terms);
end

% Calc P(t) (for all t in T)
% Can choose whether to use P1,2,... by setting n=1,2,... in A{n} & M{n}
P = tsale_solve(A{1}, M{1}, T, terms);

51

% Iterate over all mu values
for m1=1:length(mu)

% Iterate over all mu_sigma values
for m2=1:length(mu_sig)

% -------------------- Calc Pdel -------------------------
% Pdel = P_sig-P / mu
Pdel = (P{m2} - P{m1}) / mu(m1);

% ---------------------- Calc B --------------------------
for n=1:num_sys

B{n,m1,m2} = -M{n}{m1} + (I+mu(m1)*A{n}’)*Pdel*(I+mu(m1)*A{n});
end

% Get max eig-val for each B
B_evmax(m1,m2) = max(eig(B{1,m1,m2}));
for n=2:num_sys

B_evmax(m1,m2) = max([eig(B{n,m1,m2}); B_evmax(m1,m2)]);
end % for n

% Create mu_sig array for 2D plot
area{m1,m2} = [mu(m1) mu_sig(m2)];

end % for m2

end % for m1

% Create 2D plot of mu vs. mu_sigma
for m=1:length(mu)

% Invalid area (above curve)
% plot(mu(m)*ones(1,length(mu_sig(B_evmax(m,:)>=num_zero))),...
% mu_sig(B_evmax(m,:)>=num_zero), ’y’);
% Valid area (under curve)
plot(mu(m)*ones(1,length(mu_sig(B_evmax(m,:)<num_zero))),...

mu_sig(B_evmax(m,:)<num_zero), ’r+’);
end

% ---

mubounds.m

function varargout = mubounds(A,mu,varargin)
%MUBOUNDS Calculates mu/mu_sigma bounds.
% MUBOUNDS(A,MU) calculates the boundary curves for the mu/mu_sigma
% region of A using either 1) a routine to numerically find the zeros of
% the polynomials which define the bounds or 2) MATLAB to solve the
% polynomials symbolically. Note: the symbolic solver takes significantly

52

% longer for more than about 3 systems (i.e. length(A)=3).
%
% MUBOUNDS(A,MU,’method’,POINTS) applies the numeric routine using MU and
% a linearly spaced vector of length POINTS for mu_sigma [from min(MU) to
% max(MU)].
% MUBOUNDS(A,MU,’method’,’s’) solves the polynomials symbolically using
% MATLAB’s SOLVE command.
%
% MINBOUND = ... returns the points corresponding to the minimum over
% all boundary curves.
% [MINBOUND, BOUNDS] = ... returns the minimum and all the curves.
%
% Required inputs:
% A - a cell array of system matrices (num_sys x 1)
% MU - vector of points at which to plot boundary curves
% Optional input: (specified as ’parameter’,value) {default}
% ’method’ - ’s’ = have MATLAB solve equations symbolically,
% POINTS = solve equations numerically with specified
% number of mu_sigma points {100}
% Optional outputs: (in order)
% MINBOUND - (1 x length(MU)) vector of points giving the minimum
% boundary curve
% BOUNDS - (num_sys x dim x 2) cell array of (1 x length(MU)) vectors
% containing boundary curves
%
% See also MUREGION, MUVEC, PLOT_MUBOUNDS, BWMUBOUNDS.
%
% John Miller, 2/20/09

%% Check Inputs
if(isempty(A)), error(’A is empty.’), end
if(size(A{1},1) ~= size(A{1},2)), error(’A{1} is not square’), end
if(isempty(mu)), error(’MU is empty.’), end
if(~isvector(mu)), error(’MU must be a 1 x n or n x 1 vector.’), end

% Turn off "divide by zero" warning (and save the previous state)
% Note: ’eval(left_term)’ issues this warning, but we handle it with
% ’if isfinite(val)’
div0_state = warning(’off’,’MATLAB:divideByZero’);

% Assign default values
method = 1; points = 100;

% Determine optional inputs
for n=1:2:nargin-2

switch varargin{n}
case ’method’

if varargin{n+1} == ’s’

53

method = 2;
elseif(isnumeric(varargin{n+1}) && varargin{n+1} > 0)

points = varargin{n+1};
else

warning(’mubounds:input’,...
’Optional METHOD input is incorrect, using default.’)

end
end

end

%% Calc
% Get parameters
num_sys = length(A); dim = length(A{1});

% Pre-allocate memory
S = cell(num_sys,1);
J = cell(num_sys,1);
e = zeros(num_sys,dim);
bounds = cell(num_sys,dim,method);
minBound = max(mu)*ones(1,length(mu));

% Create symbolic equation terms
top = ’(’; bot = ’(’;
top_term = ’(2*real(e(%d,k)) + x*abs(e(%d,k))^2)’;
bot_term = ’(2*real(e(%d,k)) + mu(m)*abs(e(%d,k))^2)’;

for n=1:num_sys
% Diagonalize A’s
[S{n},J{n}] = eig(A{n});

% Get eigenvalues
e(n,:) = diag(J{n});

% Setup left side of symbolic equation
if(n==1)

top = [top sprintf(top_term ,n,n)];
bot = [bot sprintf(bot_term ,n,n)];

else
% (multiply added to front of string)
top = [top sprintf([’.*’ top_term] ,n,n)];
bot = [bot sprintf([’.*’ bot_term] ,n,n)];

end
end

% Create left & right terms of symbolic equation
left_term = [top ’)./’ bot ’)’];
right_term = ’((1+mu(m)*conj(e(n,k)))*(1+mu(m)*e(n,k)))’;

54

% Determine method to use (2=symbolic or 1=numeric)
if(method == 2)

% Create symbolic equation (remove periods from left side)
s = [strrep(left_term,’.’,’’) ’=’ right_term];

% Solve symbolically
% Note: returns two solutions (corresponding to +/-)
Sol = solve(s,’x’);

% Evaluate & plot bounds for each mu & eigenvalue
for n=1:num_sys

for k=1:dim
% Specify bounds to contain row vectors
bounds{n,k,1} = zeros(1,length(mu));
bounds{n,k,2} = bounds{n,k,1};

% Evaluate symbolic equation for each mu
for m=1:length(mu)

bounds{n,k,1}(m) = eval(Sol(end-1));
bounds{n,k,2}(m) = eval(Sol(end));

end

% Determine minimum bound under curves
minBound = min([minBound; bounds{n,k,1}; bounds{n,k,2}]);

end
end

else % Non-symbolic (i.e. numeric)

% Create mu_sigma vector
x = linspace(min(mu),max(mu),points);

% Iterate over all mu/mu_sig/n combinations
for m=1:length(mu)

for k=1:dim
% Evaluate left side for current m & k and all of x (mu_sig)
left = eval(left_term);

for n=1:num_sys
% Evaluate right side for current m, n, & k
right = eval(right_term);

% Specify bounds to contain row vectors
if(m==1), bounds{n,k} = zeros(1,length(mu)); end

% Boundary point corresponds to min over all mu_sig points
[val idx] = min(abs(left-right));

55

% Get current boundary point and avoid Inf values
if(isfinite(val))

bounds{n,k}(m) = x(idx);
else

bounds{n,k}(m) = max(mu);
end

% Determine minimum bound under curves
if(m==length(mu))

minBound = min([minBound; bounds{n,k}]);
end

end
end

end

end

% Restore "divide by zero" warning back to it’s original state
warning(div0_state)

% Assign outputs if requested
if nargout == 1, varargout = {minBound}; end
if nargout == 2, varargout = {minBound, bounds}; end

BWmuregion.m

function varargout = BWmuregion(ABK,mu,mu_sig,varargin)
%BWMUREGION Plots mu/mu_sigma bounds/region of the bandwidth problem.
% BWMUREGION plots a numeric version of the mu/mu_sigma region for the
% bandwidth problem using the bounds inequalities. The BW problem
% consists of a closed-loop feedback system, which is switched according
% to the choice of mu. Thus, for every value of mu (and mu_sigma) there
% is a new "system" (i.e. system matrix, script A).
%
% BWMUREGION(ABK,...) plots the numeric mu/mu_sigma region for
% ABK and uses other specified parameter/value pairs (see below).
%
% Required inputs:
% ABK - a (2x1) cell array of the A & A+BK system matrices, where
% ABK{1} = A and ABK{2} = A+BK
% MU - vector of points to use for mu (see MUVEC)
% MU_SIG - vector of points to use for mu_sigma (see MUVEC)
% Optional inputs: (specified as ’parameter’,value) {default}
% ’PlotBounds’ - 1=plot boundary lines; 0=don’t {0}
% Optional outputs:
% BOUNDS - cell array containing vectors of boundary curves
% HBOUNDS - vector of handles to boundary curves

56

% NAMES - vector of names of each boundary curve (given as
% A{sys#},{eigenvalue#}{pos/neg} e.g. A1,2+)
% AREA - (length(MU) x length(MU_SIG) x dim) matrix of the
% difference between the LHS and RHS of the bounds equation
% over the mu/mu_sigma region
%
% See also BWMUBOUNDS, BWMUVEC, PLOT_MUBOUNDS, MUREGION.
%
% Calls: BWmubounds plot_mubounds
%
% John Miller, 3/5/09

%% Check Inputs

if(isempty(ABK)), error(’ABK is empty.’), end
if(size(ABK{1},1) ~= size(ABK{1},2)), error(’ABK{1} is not square.’), end
if(size(ABK{1},1) ~= size(ABK{2},1))

error(’ABK{1} & ABK{2} are not the same size.’)
end
if(mod(nargin-1,2) ~= 0)

error([’Optional arguments must be supplied’...
’in ’’parameter’’,value pairs.’])

end

% Check for A + BK stable
if(get_mu_max(ABK{2}) < 0)

error(’A+BK is not stable on R (i.e. mu_max_ABK < 0)’)
end
% Check that A & A+BK commute
temp = norm(ABK{1}*ABK{2}-ABK{2}*ABK{1});
if(temp > 1e-8)

error(’A & A+BK do not commute, ||diff|| = %g’,temp)
end

% Check that mu & mu_sig are vectors
if(~isvector(mu)), error(’MU must be a vector.’), end
if(~isvector(mu_sig)), error(’MU_SIG must be a vector.’), end

% Determine optional inputs
for n=1:2:nargin-4

switch varargin{n}
case ’PlotBounds’

plotBounds = varargin{n+1};
end

end

57

%% Bounds

% Calculate bounds & area
[minBound, bounds, area] = BWmubounds(ABK,mu,mu_sig);

% Form names
names = cell(numel(bounds),1);
for n=1:numel(bounds)

names{n} = sprintf(’k=%d’,n);
end

% Check if user wants to plot bounds
if(exist(’plotBounds’,’var’) && plotBounds == 1)

% Plot bounds
[hBounds, names] = plot_mubounds(mu,bounds,names);

else
% Create empty variables to return
hBounds = []; names = [];

end

%% Region

% Fill the region by plotting idividual points
hold on
for m1=1:length(mu)

for m2=1:length(mu_sig)
% Check that bounds ineq is satisfied for both eigenvalues
if(sum(area(m1,m2,:)) >= 0)

S = ’k+’;
else S = ’ro’;
end
% Plot the point
plot(mu(m1),mu_sig(m2),S);

end
end
hold off
xlabel(’\mu_i’), ylabel(’\mu_j’)

% Plot 3D region
% figure(gcf+1)
% h = surf(mu, mu_sig, log10(area(:,:,1)’));
% set(h,’EdgeAlpha’,.05)
% %caxis([min(min(area(:,:,1))) 5])
% caxis([-5 5])
% %zlim([-5 5])
% view(0,90)
% figure(gcf+1)

58

% h = surf(mu, mu_sig, log10(area(:,:,2)’));
% set(h,’EdgeAlpha’,.05)
% %caxis([min(min(area(:,:,2))) 5])
% caxis([-5 5])
% %zlim([-5 5])
% view(0,90)

% Determine desired outputs
if nargout == 1, varargout = {bounds}; end
if nargout == 2, varargout = {bounds, hBounds}; end
if nargout == 3, varargout = {bounds, hBounds, names}; end
if nargout == 4, varargout = {bounds, hBounds, names, area}; end

inside bound.m

function varargout = inside_bound(A,mu,varargin)
%INSIDE_BOUND Simulates a system with points under the mu/mu_sigma bound.
% [X,T]=INSIDE_BOUND(A,MU) simulates a randomly switched system with
% system matrices A and vector of availble mu choices MU and returns X,
% the state response of the system, and T, the time vector over which X
% is calculated. Mu points are chosen randomly below the mu/mu_sigma
% bound.
%
% INSIDE_BOUND(A,MU,CHOICES) allows the variable CHOICES to determine
% the number of choices of mu_sigma values at each mu point.
%
% [X,T,T_MU,T_MU_SIG] = ... returns the points chosen for mu
% and mu_sigma (similar to TSMU, but not a timescale object).
% [...,MU_RESETS] = ... returns the indices of where mu_sigma is chosen
% small because it must be (i.e. has to be less than mu_max).
%
% Required inputs:
% A - a cell array of system matrices (num_sys x 1)
% MU - vector of points at which to plot boundary curves
% (see MUVEC)
% Optional inputs: {default}
% MU_MIN - minimum value mu is allowed to take {.2*mu_max}
% Optional outputs:
% X - system response
% T - time vector
% T_MU - vector of mu points chosen
% T_MU_SIG - vector of mu_sigma points chosen
%
% See also VIOLATE_BOUND, MUBOUNDS, MUVEC.
%
% Calls: mubounds get_system_response
%

59

% John Miller, 5/15/09

%% Check inputs
if(isempty(A)), error(’A is empty.’), end
if(size(A{1},1) ~= size(A{1},2)), error(’A{1} is not square’), end
if(isempty(mu)), error(’MU is empty.’), end
if(~isvector(mu)), error(’MU must be a 1 x n or n x 1 vector.’), end

% Assign default values
mu_min = .2*max(mu);

% Determine if optional input is valid
if(nargin > 2)

if(varargin{1} > 0)
mu_min = varargin{1};

else
warning(’inside_bound:input’,...

’Optional input is incorrect, using default.’)
end

end

%% Setup
t = zeros(1,50); % Init time vector
t_mu = zeros(length(t)-1,1); % Init chosen mu points vector
t_mu_sig = t_mu; % Init chosen mu_sigma points vector
mu_sig = mu(10); % Init mu_sigma
idx = 10; % Init mu_sigma index
mu_resets = 1; % Init vector of points where mu is reset

%% Calc
% Calc mu/mu_sigma bound
minbound = mubounds(A,mu);

% Choose mu values that don’t violate bound & build time vector
for i=1:length(t)-1

% mu_sig is now the current mu value
t_mu(i) = mu_sig;
t(i+1) = t(i)+mu_sig;

% Find the limits of allowable mu_sig choices (above mu_min, below
% the bound)
high = find(mu < minbound(idx),1,’last’);
low = find(mu > mu_min,1);

% Check for no allowable points
if((high-low) <= 0)

error(’No allowable points were found: i=%d, high=%d, low=%d’,...
i,high,low)

60

else
% Choose a random mu_sigma value below the bound
idx = ceil(low+(high-low)*rand);
mu_sig = mu(idx);

end

% Save current mu_sigma point
t_mu_sig(i) = mu_sig;

end

% Calc switched system response
x = get_system_response(A, t_mu, 3);

% Determine desired outputs
if nargout == 2, varargout = {x, t}; end
if nargout == 3, varargout = {x, t, t_mu}; end
if nargout == 4, varargout = {x, t, t_mu, t_mu_sig}; end

violate bound.m

function varargout = violate_bound(A,mu,varargin)
%VIOLATE_BOUND Simulates a system with points above the mu/mu_sigma bound.
% [X,T]=VIOLATE_BOUND(A,MU) simulates a randomly switched system with
% system matrices A and vector of availble mu choices MU and returns X,
% the state response of the system, and T, the time vector over which X
% is calculated. Mu points are semi-randomly chosen above the minimum
% mu/mu_sigma bound.
%
% VIOLATE_BOUND(A,MU,CHOICES) allows the variable CHOICES to determine
% the number of choices of mu_sigma values above the bound.
%
% [X,T,T_MU,T_MU_SIG] = ... returns the points chosen for mu
% and mu_sigma (similar to TSMU, but not a timescale object).
% [...,MU_RESETS] = ... returns the indices of where mu_sigma is chosen
% small because it must be (i.e. has to be less than mu_max).
%
% Required inputs:
% A - a cell array of system matrices (num_sys x 1)
% MU - vector of points at which to plot boundary curves
% (see MUVEC)
% Optional inputs: {default}
% CHOICES - number of mu_sigma value choices above the {3}
% bound
% Optional outputs:
% X - system response
% T - time vector
% T_MU - vector of mu points chosen

61

% T_MU_SIG - vector of mu_sigma points chosen
% MU_RESETS - indices of T_MU where mu_sigma is small
%
% See also INSIDE_BOUND, MUBOUNDS, MUVEC.
%
% Calls: mubounds get_system_response
%
% John Miller, 5/15/09

%% Check inputs
if(isempty(A)), error(’A is empty.’), end
if(size(A{1},1) ~= size(A{1},2)), error(’A{1} is not square’), end
if(isempty(mu)), error(’MU is empty.’), end
if(~isvector(mu)), error(’MU must be a 1 x n or n x 1 vector.’), end

% Assign default values
choices = 3;

% Determine if optional input is valid
if(nargin > 2)

if(varargin{1} > 0)
choices = varargin{1};

else
warning(’violate_bound:input’,...

’Optional input is incorrect, using default.’)
end

end

%% Setup
t = zeros(1,50); % Init time vector
t_mu = zeros(length(t)-1,1); % Init chosen mu points vector
t_mu_sig = t_mu; % Init chosen mu_sigma points vector
mu_sig = mu(1); % Init mu_sigma
idx = 1; % Init mu_sigma index
mu_resets = 1; % Init vector of points where mu is reset

%% Calc
% Calc mu/mu_sigma bound
minbound = mubounds(A,mu);

% Choose mu values that violate bound & build time vector
for i=1:length(t)-1

% mu_sig is now the current mu value
t_mu(i) = mu_sig;
t(i+1) = t(i)+mu_sig;

% Find the next mu_sig value just above the bound
idx = find(mu > minbound(idx),1);

62

% Check if we are at mu_max
if(isempty(idx) || mu(idx) == max(mu))

% Randomly choose 1 of the 1st CHOICES mu values
idx = ceil(choices*rand);
mu_sig = mu(idx);
% Add next point’s index to list of where mu is reset
mu_resets = [mu_resets i];

else
% Set the allowable choices based on how close we are to mu_max
if idx > find(mu==max(mu))-choices

% Choose one of available values between current and mu_max
idx = ceil(idx+(length(mu)-idx)*rand);

else
% Choose one of CHOICES values above the bound
idx = ceil(idx+choices*rand);

end
% Get the mu_sigma value chosen
mu_sig = mu(idx);

end
% Save current mu_sigma point
t_mu_sig(i) = mu_sig;

end

% Calc switched system response
x = get_system_response(A, t_mu, 3);

% Determine desired outputs
if nargout == 2, varargout = {x, t}; end
if nargout == 3, varargout = {x, t, t_mu}; end
if nargout == 4, varargout = {x, t, t_mu, t_mu_sig}; end
if nargout == 5, varargout = {x, t, t_mu, t_mu_sig, mu_resets}; end

63

BIBLIOGRAPHY

[1] B. Allen, “Experimental investigation of a time scales linear feedback control
theorem,” Master’s thesis, Baylor University, 2007.

[2] R. Bishop and R. Dorf, Modern Control Systems, 9th ed. Upper Saddle River,
NJ: Prentice-Hall, 2001.

[3] M. Bohner and A. Peterson, Dynamic Equations On Time Scales: An Introduc-
tion With Applications. Boston, MA: Birkhäuser, 2001.

[4] M. Bohner and A. Peterson, Eds., Advances in Dynamic Equations On Time
Scales. Boston, MA: Birkhäuser, 2003.

[5] C.-T. Chen, Linear System Theory and Design, 3rd ed. New York, NY: Oxford
University Press, 1999.

[6] D. Cranor, “Testing the mu-sigma boundary for randomly switched systems over
discrete time scales,” 2008, result of independent undergraduate research
study.

[7] J. DaCuhna, “Lyapunov stability and floquet theory for nonautonomous linear
dynamic systems on time scales,” Ph.D. dissertation, Baylor University, 2004.

[8] J. DaCunha, “Stability for time varying linear dynamic systems on time scales,”
J. Computational and Applied Mathematics, vol. 176, no. 2, pp. 381–410, Apr.
2005.

[9] ——, “Transition matrix and generalized matrix exponential via the Peano-Baker
series,” J. Difference Equations and Applications, pp. 1245–1264, 2005.

[10] ——, “Instability results for slowly time varying linear dynamic systems on time
scales,” J. Mathematical Analysis and Applications, pp. 1278–1289, April
2007.

[11] J. Davis, private communication.

[12] J. Davis, J. Miller, I. Gravagne, R. Marks II, and A. Ramos, “Stabilty of switched
linear systems on non-uniform time domains,” 2008, submitted to IEEE
Trans. on Systems, Man, and Cybernetics - Part B.

[13] I. Gravagne, J. Davis, and J. DaCuhna, “A unified approach to high-gain adap-
tive controllers,” 2009, submitted to SIAM J. Control and Optimization.

[14] I. Gravagne, J. Davis, J. DaCunha, and R. Marks II, “Bandwidth reduction
for controller area networks using adaptive sampling,” in Proc. Int. Conf.
Robotics and Automation, New Orleans, LA, Apr. 2004, pp. 5250–5255.

64

[15] S. Hilger, “Ein maßkettenkalkül mit anwendung auf zentrumsmannigfaltig-
keiten,” Ph.D. dissertation, Universität Würzburg, 1988.

[16] M. Hirsch and S. Smale, Differential Equations, Dynamical Systems, and Linear
Algebra. New York, NY: Academic Press, 1974.

[17] R. Horn and C. Johnson, Matrix Analysis. Cambridge University Press, 1996.

[18] B. Jackson, “A general linear systems theory on time scales: Transforms, stabil-
ity, and control,” Ph.D. dissertation, Baylor University, 2007.

[19] W. Levine, Ed., The Control Handbook. Boca Raton, FL: CRC Press, Inc.,
1996.

[20] D. Liberzon, Switching in Systems and Control. Boston, MA: Birkhäuser, 2003.

[21] A. Lyapunov, “The general problem of the stability of motion,” Int. J. Control,
vol. 55, pp. 521–790, 1992.

[22] A. Ramos, “Stability of hybrid dynamical systems: Analysis and design,” Ph.D.
dissertation, Baylor University, Aug. 2009.

[23] G. Strang, Introduction to Applied Mathematics. Wellesley, MA: Wellesley-
Cambridge Press, 1986.

65

