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Abstract

We develop eigenvalue criteria under which the solutions of a “slowly” time varying linear dynamic
system of the form x4 (t) = A(t)x(t) are unstable.
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1. Introduction

It is widely known that the stability characteristics of an autonomous linear system of differen-
tial or difference equations can be characterized completely by the placement of the eigenvalues
of the system matrix [12]. Recently, Potzsche, Siegmund, and Wirth [18] authored a landmark
paper which developed necessary and sufficient conditions for the stability of time invariant lin-
ear systems on arbitrary time scales. Their characterization included the sufficient condition that
the eigenvalues of the system matrix be contained in the possibly disconnected set of stability
S(T) ¢ C~, which may change for each time scale on which the system is studied. In [7,9],
sufficient conditions are given on the placement of the eigenvalues of a sufficiently slowly time
varying system which ensures exponential stability of the system solution.

The intent of this paper is to extend the classic results of the instability criteria for eigenvalue
placement of a sufficiently slowly time varying system to the more general case of nonau-
tonomous linear dynamic systems on a large class of time scales (i.e. those time scales with
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bounded graininess and supT = oo). For a brief introduction to time scales analysis, as well
as necessary definitions for this paper, see [1,3,4]. We show by example that the placement of
eigenvalues of the system matrix outside of the corresponding Hilger circle does not guarantee
the instability of the time varying system, as is the case with autonomous linear systems of dif-
ferential and difference equations [5,12—15,20]. We unify and extend the theorems of eigenvalue
placement in the proper region of the complex plane for sufficiently slowly varying system ma-
trices of continuous and discrete nonautonomous systems, which guarantees instability of the
system, as in the classic papers of Wu [22] and Skoog and Lau [16]. To develop this theory
for nonautonomous systems, we implement the generalized time scales version of the “sec-
ond (direct) method” of A.M. Lyapunov [17] which yields an instability criterion result, as in
the standard papers on stability of continuous and discrete dynamical systems by Kalman and
Bertram [13,14] as well as the very recent paper [9]. The inherent beauty and elegance of Lya-
punov’s “second method” is that knowledge of the exact solution is not necessary. The qualitative
behavior of the solution to the system (i.e. the stability or instability) can be investigated without
computing the actual solution.

This paper is organized as follows. In Section 2, we give general definitions of our matrix
norms, as well as stability definitions and characterizations. Section 3 introduces the unified time
scale Lyapunov function for use in determining uniform exponential stability of linear systems on
time scales. It also introduces a theorem that gives conditions on the eigenvalues of a sufficiently
“slowly” time varying system matrix which ensures exponential stability of the system solution.
Lastly, in this section we demonstrate how the quadratic Lyapunov function can also be used to
determine the instability of a system. In Section 4, we give two theorems which characterize the
instability of sufficiently slowly varying system by observing the placement of the system matrix
eigenvalues in the Hilger complex plane. In the conclusions, we summarize our unified results.

2. General definitions

We start by introducing definitions and notation that will be employed in the sequel.
The Euclidean norm of an n x 1 vector x(¢) is defined to be a real-valued function of ¢ and is
denoted by

x| = vxT @0)x ().

The induced norm of an m x n matrix A is defined to be

[All = max || Ax]].
llxll=1
The norm of A induced by the Euclidean norm above is equal to the nonnegative square root
of the absolute value of the largest eigenvalue of the symmetric matrix A” A. Thus, we define
this norm next. The spectral norm of an m x n matrix A is defined to be

IA]l = [ max xTATAx]l/Z.
llxll=1
This will be the matrix norm that is used in the sequel and will be denoted by || - ||
A symmetric matrix M is defined to be positive semidefinite if for all n x 1 vectors x we have
xTMx >0 and it is positive definite if xT Mx > 0, with equality only when x = 0. Negative
semidefiniteness and definiteness are defined in terms of positive definiteness of —M.
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We now define the concepts of uniform stability and uniform exponential stability. These two
concepts involve the boundedness of the solutions of the regressive time varying linear dynamic
equation

XA =AMx@1),  x(te)=xo, toeT. Q2.1
Definition 2.1. The time varying linear dynamic equation (2.1) is uniformly stable if there exists
a finite constant y > 0 such that for any 79 and x(#y), the corresponding solution satisfies

x| <y|x@w)]|. t=10. 2.2)

For the next definition, we define a stability property that not only concerns the boundedness
of a solutions to (2.1), but also the asymptotic characteristics of the solutions as well. If the
solutions to (2.1) possess the following stability property, then the solutions approach zero expo-
nentially as t — oo (i.e. the norms of the solutions are bounded above by a decaying exponential
function).

Definition 2.2. The time varying linear dynamic equation (2.1) is called uniformly exponentially
stable if there exist constants y, A > 0 with —A € R™ such that for any fo and x(¢p), the corre-
sponding solution satisfies

lx@®] < [x@)||ye-srt.10), 1 >10. 23)

It is obvious by inspection of the previous definitions that we must have y > 1. By using the
word uniform, it is implied that the choice of y does not depend on the initial time 7.
The last stability definition given uses a uniformity condition to conclude exponential stability.

Definition 2.3. The linear state equation (2.1) is defined to be uniformly asymptotically stable if
it is uniformly stable and given any § > 0, there exists a T > 0 so that for any #y and x(#y), the
corresponding solution x (¢) satisfies

[x®| <8|xto)||, t=>t0+T. (2.4)

It is noted that the time 7 that must pass before the norm of the solution satisfies (2.4) and the
constant § > 0 is independent of the initial time #.

We now state three theorems, in which the first two characterize uniform stability and uniform
exponential stability in terms of the transition matrix for the system (2.1). Detailed explanations
and proofs of the following theorems can be found in [8,9].

Theorem 2.1. The time varying linear dynamic equation (2.1) is uniformly stable if and only if
there exists a y > 0 such that

[®att,t0)| <¥
forallt >ty witht,ty e T.
Theorem 2.2. The time varying linear dynamic equation (2.1) is uniformly exponentially stable
if and only if there exist A, y > 0 with —\ € R such that

@At t0)| < ye-it.10)
forallt >ty witht, tgeT.
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Theorem 2.3. The linear state equation (2.1) is uniformly exponentially stable if and only if it is
uniformly asymptotically stable.

3. Stability of slowly time varying linear dynamic systems and an instability criterion

In this section, we investigate the instability of the regressive “slowly” time varying linear
dynamic system of the form

XA = AWDx@),  x(t))=xo, foeT. 3.1)

Our goal is to assess the instability of the unforced system by observing the system’s total energy
as the state of the system evolves in time. We assume that the time scale T is unbounded above.

To formalize our discussion, we employ time-dependent quadratic forms that are useful for
analyzing stability. We will refer to these quadratic forms as unified time scale quadratic Lya-
punov functions. For a symmetric matrix Q(t) € Crld(']T, R™ ™) we write the general quadratic
Lyapunov function as x () Q(t)x(¢). If x(¢) is a solution to (3.1), and since x” () Q(t)x(¢) has
a scalar output, our interest lies in the behavior of the quantity x (1) Q(t)x(¢) for t > ty. With
this we now define one of the main ideas of this paper.

Definition 3.1. Let Q(¢) be a symmetric matrix such that Q(z) € Crld(']I‘, R™™). A unified time
scale quadratic Lyapunov function is given by

xTomx), t=1, (3.2)

with delta derivative

[T owxn]™
=x"O[AT QM) + (I + 1 AT (1)) (Q (1) + QAW + n®) QX (HA®)) |x (1)
=x"(O[AT QM) + QAW + n®AT () Q1) A®)
+ (I +u@®AT®)) 02 (I + 1 AD)]x(@).

The matrix dynamic equation that is obtained by differentiating (3.2) with respect to ¢ is given
by

AT Q) + QAW + (AT (1) Q1) A®t)
+ (I +u0ATD)Q (I + nAWD)=-M, M=M".

One can easily see that it merges with the familiar continuous matrix differential equation
(T =R) and discrete (T = Z) difference (recursive) equation obtained from the respective
quadratic Lyapunov functions in R and Z.

The unified time scale matrix dynamic equation merges into the continuous and discrete cases
easily because of the time varying graininess w(¢). This unified time scale matrix dynamic equa-
tion not only unifies the two special cases of continuous and discrete time, it also extends these
notions for arbitrary time scales T, and as such plays a crucial role in our analysis.

First, we give a closed form for the unique, symmetric, and positive definite solution matrix
to the time scale Lyapunov matrix equation

ATHQ®) + QMA@ +nAT ) QW) AR) = —M. 3.3)
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Remark. We note that the time scale Lyapunov matrix equation is the unification (with
B(t) = AT (1)) of the Sylvester matrix equation [2]

XAt)+Bt)X=—-M
for the case T = R and the Stein equation
BO)XAt)—X=-M

for the case T = Z. The Stein matrix equation above is written assuming that one is using recur-
sive form. It can easily be transformed into an equivalent difference form

XA()+B®O)X+ B(t)XA(t)=—M.

To prove that the matrix Q(#) is a solution to the time scale Lyapunov matrix equation (3.3),
we first state the following lemma that can be found in [4].

Lemma 3.1. Suppose A € R and C is a constant matrix. If C commutes with A(t), then C
commutes with ea. In particular, if A(t) is constant matrix with respect to ex(), then A(t)
commutes with e ().

Now we present one of the main results of [9].

Theorem 3.1. If the n x n matrix A(t) has all eigenvalues in the corresponding Hilger circle
for every t > ty, then for each t € T, there exists some time scale S such that integration over
I :=[0, 00)s yields a unique solution to (3.3) given by

o) :/eAr(l)(s,O)MeA(,)(s,O)As. (34
I
Moreover, if M is positive definite, then Q(t) is positive definite for all t > 1.

The placement of eigenvalues in the complex plane of a time invariant matrix is a necessary
and sufficient condition to ensure the stability and/or exponential stability of the system. This
is a well-known fact in the theory of differential equations and difference equations, and it is
investigated in depth in the landmark paper on the stability of time invariant linear systems on
time scales by Potzsche, Siegmund, and Wirth [18].

However, eigenvalue placement alone is neither necessary nor sufficient in the general case
of any time varying linear dynamic system. Texts such as Brogan [5], Chen [6], and Rugh [20]
give examples of time varying systems with “frozen” (time invariant) eigenvalues with negative
real parts as well as bounded system matrices that still exhibit instability. The classic papers by
Desoer [10], Rosenbrock [19], and a recent paper by Solo [21] demonstrate this fact for systems
of differential equations, but they do show that under certain conditions, such as a bounded
and sufficiently slowly varying system matrix, exponential stability can be obtained with correct
eigenvalue placement in the complex plane. Desoer also published a similar paper [11] (a discrete
analog to [10]) which illustrates the same instability characteristic of time varying systems in the
discrete setting, but remedies the situation in essentially the same manner, with a bounded and
sufficiently slowly varying system matrix.

To begin, we state a definition from P6tzsche, Siegmund, and Wirth’s paper [18], in which
the stability region for time invariant linear systems on time scales is introduced. This defini-
tion essentially says if the time average of the constant A € C is negative and 1 + p(t)A # 0
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for all + € T*, then A resides in the regressive set of exponential stability S(T), defined be-
low. This definition is an integral part of the requirement for exponential stability of a time
invariant linear system on an arbitrary time scale. If, foralli =1, ...,n, A; € S(T) and are uni-
formly regressive (there exists a positive constant § such that 0 < STV + w()ril, t € T),
then the system (2.1), with A(¢#) = A constant, is uniformly exponentially stable (i.e. there ex-
ists an o > 0 such that for any #p € T, ¥ > 0 can be chosen independently of #y such that
1A, 10)1l < lx(to) Iy e =),

Definition 3.2. [18] The regressive set of exponential stability for the dynamic system (2.1) when
A(t) = A is a constant, is defined to be the set

T
log |1+ 52
/hm loglt+si ol

s\ (t) s
fo

S(T) =11 eC: limsu
{ T—>oop T—1n

The regressive set of exponential stability is contained in {A € C: Re(}) < 0} at all times. The
reader is referred to [18] for more explanation.

In the main theorem that follows, we require the eigenvalues A; (¢) of the time varying matrix
A(#) to reside in the corresponding Hilger circle for all > #p and i = 1, ..., n. We note that the
Hilger circle is defined as the set

{AG(C:

1 1
wo O o } .

We now present the theorem for uniform exponential stability of slowly time varying systems
which involves an eigenvalue condition on the time varying matrix A(¢) as well as the require-
ment that A(¢) is norm bounded and varies at a sufficiently slow rate (i.e. || A® ()| < B, for some
positive constant 8 and all ¢ € T). This theorem is one of the main results of [9].

Theorem 3.2 (Exponential stability for slowly time varying systems). Suppose for the regressive
time varying linear dynamic system (3.1) with A(t) € Crld(T, R™ ™) we have [imax, ,ur%ax < 09,

there exists a constant a > 0 such that |A(t)|| < «, and there exists a constant 0 < & < ul <
max

ﬁ such that for every pointwise eigenvalue 1;(t) of A(t), Rey[A;(1)] < —& < 0. Then there

exists a B > 0 such that if ||A®(t)|| < B, (3.1) is uniformly exponentially stable.

We can also employ the unified timescale quadratic Lyapunov function to determine if the
system (3.1) is unstable. This is a very useful result in the case where the development of a
suitable matrix Q(t) is difficult and the possibility of an unstable system begins to arise. One
type of instability criteria is developed in the next theorem.

Theorem 3.3. [9] Suppose there exists an n x n matrix Q(t) € Crld that is symmetric for allt € T
and has the following two properties:

@ 12N < ps
(i) ATNQ@) + U +pn@) AT ))(QA 1) + QAW + p(1) Q4 (NA®)) < —vI,

where p, v > 0. Also suppose that there exists some t, € T such that Q(t,) is not positive semi-
definite. Then the linear dynamic equation (3.1) is not uniformly stable.
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4. Instability of slowly time varying systems

We now consider time scales with such that sup T = oo, inf T = —oo and ju(¢), 1 (¢) exist
and are bounded above by the positive constants jimax and 5, respectively. In the following
theorem, we state a decomposition of R” into two time varying subspaces that are invariant under
the matrix A(t).

Theorem 4.1. Let the matrix-valued function A(t) € Crld (T, R™*™) and satisfy the following con-
ditions.

(1) a=sup,>, |A@®)]| < oo and a® =sup,>, |A*(1)] < cc.

(2) The eigenvalues of A(t), M1, ..., Ay, are bounded away from a closed Jordan curve I' in the
complex plane for all t > tg. The set A1(t) = {,1(t), ..., A (t)} lies inside I' and the set
A1) ={Ak1(), ..., An(t)} lies outside T

Then there exists a matrix valued function T (t) € Crld such that

ey p=sup| T ()] < oo,

12110}
~ —1
o= sup||T (t)|| < 00,
t>tg
p® =sup|T2(1)| < Ka®,
|20
where p, p, p®, a and K are finite positive constants and

Q) T'ANOT () = [A'.ft) Azo(t)]’

where A1 (t) is k X k and its eigenvalues are A (t), ..., A (t) and Ay(t) is (n — k) X (n — k) and
its eigenvalues are Ay1(t), ..., kn(t). Also, sup;, [|AL ()| < K1a®, and sup, s, |AS (1] <
KzaA,for some 0 < K1, Ky < 0.

Theorem 4.2. Let A(t) satisfy the conditions of Theorem 4.1, and suppose that pimax, uﬁax < 00,
the eigenvalues A1(t), ..., A (t) lie in Rey [A;(1)] < —e1 <O with 0 < g1 < ﬁ < ﬁ for all

t 2 ty, and that Ly 1(t), ..., A (t) lie in Re, [A;(t)] > &2 > O for all t > ty. Then ifaA is suffi-
ciently small, the zero solution of (3.1) is unstable.

Proof. From Theorem 4.1 it is known that there exists a matrix valued function 7'(¢) such that
conclusion (2) of the theorem holds. Let the matrices Q1(¢) and Q(¢) be the respective solutions
of

AT 01() + Q1) AL() + (AT (1) Q1 (1) A1 (1) = — Ikxk (4.1)

and

A7 (D) Q2(t) + Q2(1) Aa(1) + () A (1) Q2 () Az () = — Ity x(n—k)- 4.2)
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Since the eigenvalues of Aj(7) are in Re,[A;(t)] < —&; < 0 for all # > 1y and the eigenvalues
of A>(t) are in Re,[A; ()] > &2 > O for all ¢ > 1o, it is known that (4.1) and (4.2) have unique
solutions for all ¢ € T. It is shown in [9] that the respective unique solutions are given by

Ql(t)=/eAlr(t)(s,O)eAl(t)(s,O)As 4.3)
0
and
0
Or(t) =— / eAzr(l)(s,O)eAz(t)(s,O)As, 4.4)

with integration over S := u () - Z in both integrals. By construction, Q(¢) is positive definite
and Q»(¢) is negative definite for all ¢ > 1.
Applying the change of variables z(¢) = T-1(®)x(¢), we obtain

2O =[T"" AT - T OT*O](0),  z200) =20=T '(t)xo.  (4.5)

For the system in (4.5), we choose the unified quadratic Lyapunov function V (¢) :=z7 (1) Q(t)z(t)
where

0i(r) 0
1) = . 4.6
10 [ 0 o0, m} (46)
Setting A(t) = [T"i1 OADT () — 70! (t)T 2 (t)], with ¢-dependence omitted for brevity, we
see that along the solutions of (4.5),

VA=T[ATQ+ QA+ uAT QA+ (I +1AT) Q% (I + 1A)]z
=174 7'M+ Flz, 4.7
where the first term —z7 Iz results from 77 () acting on A(¢) as the transformation matrix 7 (¢)

in Theorem 4.1, M (t) := (I + u(t)AT (1)) Q2 (t)(I + (1) A(t)), the definition of Q(¢) is from
Eq. (4.6), and the matrix F(¢), again with #-dependence omitted for brevity, is defined by
Fi=u[—(T7 " AT?) Q(uT? AT® + T°'T) = (uT? AT® + 77 'T) Q(T° ' AT?)
+ (T AT + 77 ' T) Q(uT AT + 77 ' T)]
— QuT AT +T° 'T) — (uT° AT* +7° 'T)" Q.
Further, the matrix valued function F(¢) is bounded in norm above by some positive con-
stant D, i.e. sup,>, [F(0)| < D < 00, lim, o[ F (1) + M(1)] = Q1) — Q)(T ' ()T (1)) —
(T~ )T ()T Q(t). From Theorem 4.1 we have [|[T2(®)|| < o, T '@®)|| < 5, and || Q@)

and ||Q(¢)|| are bounded by construction in Egs. (4.3) and (4.4) and [7], for all ¢ > #y. So there
exists a constant 0 < C < oo such that

sup| F(1) + M) | < Ca®. (4.8)
t>to
Thus, from (4.7) and (4.8), if Ca® < 1, then V2(t) < —vz! ()z(r), for some v > 0. Since
Q2 (t) is negative definite for all ¢ > fg, the hypotheses of Theorem 3.3 are satisfied. Thus, if
SUpP; >, A2 ()| = a® is sufficiently small, the equilibrium solution of (4.5) is unstable which
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implies the equilibrium solution of (3.1) is unstable (by the stability preserving properties of a
Lyapunov transformation of variables [8]). O

Another interesting result which follows easily from Theorem 4.2 has to do with nonlinear
time varying perturbations on (3.1).

Theorem 4.3. Consider the regressive nonlinear system
B0 =AW0x@) +g(t.x(0),  x(to) =xo, (4.9)

where the matrix A(t) satisfies the hypotheses of Theorem 4.2, [imax, uﬁm < 00, and the vector-
valued function g(t, x(t)) € Ciq(T, R") satisfies || g(t, x())|| < €llx(@)| for all t € T and x(t).
Then ifsupl>l0 A2 @)l is sufficiently small, the zero solution of (4.9) is unstable.

For the final portion of this paper, we prove a new theorem that is a generalization of a result
in [16], which encompasses the well-known result in differential equations as a special case of
the time scale T = R.

Theorem 4.4. Consider the system (3.1) and let A(t) satisfy the assumptions of Theorem 4.2.
Then for a® sufficiently small there exists for each t >ty a k-dimensional subspace S(t) such
that, if ¢(t) is a solution of (3.1) with ¢(to) € S(to), then ||p(t)|| < Be—, (¢, to) for some con-
stants B, y > 0 with —y € RT. Moreover, if ¢ (tg) ¢ S(to), then ||¢(t)| — oo as t — oo.

Proof. Let @(z, 1)) and @;(z, t9) be the transition matrices for A(¢#) and A>(z), respectively.
Since ||A1A(t)|| < Kjo® and A (¢) has all eigenvalues such that Re,[A; (#)] < —&; < Oforalli =
1,...,kand t > 1y, by Theorem 3.2, if ol s sufficiently small, then for some positive constants
v1, c1 with —y; e RT,

@1, 10)|| <cre—y, (t.10), t>10. (4.10)
Also since ||A2A (1) < K2a® and A (¢) has all eigenvalues such that Re, [ (t)] = &2 > O for all
i=k+1,...,nandt > 1y, for some positive constants y,, co we have,

[ @22, 10) | < c2epy (2, 10), 1 <to. (4.11)
Define

2 _ | @i(t,10) O

D1 (t,10) = [ 0 0 4.12)
and

A 0 0

Do(t, 1) = [0 @5 (1. to)]' (4.13)

Now consider the system obtained after a Lyapunov transformation of variables z(¢) =
T—1(#)x(¢) where the matrix 77 (r) acts on A(¢) as in Theorem 4.1. Then

20 =[T7" OAOT (1) - FO]z(t),  z(to) =20 =T "(to)xo, (4.14)

where the function F(r) = [w(OT°  (OAWDTA () + T° ()TA ()], and limy, 0 F (1) =
T—Y()T (r). We also have sup, >, 1F ()1l = a® K (1 + optmax). For each vector y € R”, de-
fine the mapping J, by
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(Jyd) ()
t oo
= qﬁl(t,to)y—fqﬁl(t,a(r))F(r)qs(r)Ar+fq32(t,a(r))F(r)¢(r)Ar. (4.15)

Iy t

From the bounds in (4.10) and (4.11), and the fact that A(¢), T~'(¢), and T2(¢) are bounded
for all € T, it follows that J, maps L% (9, oo)t into itself (where L7 (tp, oo)T is the normed
linear space of R"-valued functions of 7 such that if Y € L5, (fo, 00)T, then sup, >, [ (1)]| < 00).

We now show that for sufficiently small a’, Jy is a contraction on L7 (fp, oo)T and thus has a
unique fixed point ¢3. This fixed point is a solution of (4.14).
To show that Jy is a contraction, observe

t

(Jyp1) (1) — (Jy2) (1) = — / B, (1,0 (1) F(T)($1(1) — ¢a(1)) AT

fo
o

+ / ®5(t,0 (1)) F(2)(1(z) — 9o (1)) At. (4.16)

t

Applying the norm || - [|oc (the norm on L (#p, oo)T) to both sides of (4.16), we obtain

[Jyp1 — Jydalloo < Ka®p(1 + atfimax) 11 — P2 100

t o0
X |:61/€_y1 (I,O(‘L'))Al'+62/6’V2(Z‘,G(‘L'))A‘L’:|
) t
<yKa® 51+ apima) |91 — d2 0o, (4.17)

where y := (;—i + %).
Thus, if y Ka®5(1 4+ apimax) < 1, then Jy is a contraction and has unique fixed point ¢;f.
Using successive approximations, it can also be shown that

1 o
l#50] < = [#1¢. 107 < aldl, ), (4.18)

— l—g
where g := Yy Ka® 5(1 + afimax) < 1.

In the definition of Jy, only the first K components are involved. Then last n — k components
can be chosen to be zero. From (4.15) and the fact that ¢ is a fixed point, the first kK components
of qb;‘ (tp) are the first kK components of y and the remaining n — k components are given by

[e.e]

[¢;(to)]j = |:/éz(to,a(r))F(r)¢;(r)Af:| , j=k+1,...,n. (4.19)

to J

Thus, there exists a k parameter family of solutions of (4.14) that are exponentially bounded
(in the sense of (4.18)). Since the system is linear, we have the following property that for
¢;‘1 + d);z = ¢;‘,1 Fy2 and hence, for each 1, there exists a k-dimensional subspace S(fy) of R”

such that if ¢ (¢) is a solution of (4.14) with ¢ (fp) € S(to), then ¢ (7) is exponentially bounded.
Transforming back to the system (3.1), the theorem follows with S(z) := T (¢)S(¥).
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It remains to show that if ¢ (¢y) ¢ S (to) and ¢ is a solution of (4.14), then ¢ is unbounded. We
suppose that ||¢ (¢)] is bounded. By variation of constants,

t

o(1) = [®1(1,10) + D2(t, 10) ] (t0) — / [®1(r.0 (D) + ®2(1. 0 (D) |F (D) (1) AT

]

t
— Bt 1) (t0) + Bt 10) 2 — / 1 (1.0 () ()¢ (1) At
0]

+/<52(t,a(r))F(r)¢(r)At, (4.20)
t
where
9:¢(ro)—/éz(z,a(r))F(r)qs(z)Ar. 4.21)

fo

The integrals in (4.20) and (4.~21) exist because of the assumption that ||¢ () || is bounded (by
(4.10) and (4.11)). Soif ¢ (t9) ¢ S(10), then the last n — k components of §2 are not all zero. Thus
P, (t, tp)$2 will be unbounded, which contradicts the fact assumption that ¢ is bounded. O

5. Conclusions

In this paper, we have unified and extended the results for an eigenvalue condition on suffi-
ciently slowly varying linear dynamic systems on continuous domains to any closed subset of
the real line, i.e. any time scale, to determine the instability of the system. If the eigenvalues of
the system matrix are restricted from crossing the boundary of the (possibly dynamically chang-
ing) Hilger circle for all ¢ > 1y, along with the system matrix varying at a sufficiently slow rate,
then the stability (and in this paper, instability) characteristics of the time varying system can be
analyzed using time invariant eigenvalue conditions.
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