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In this work, we examine linear systems theory in the arbitrary time scale set-

ting by considering Laplace transforms, stability, controllability, observability, and

realizability. In particular, we revisit the definition of the Laplace transform given

by Bohner and Peterson in [10]. We provide sufficient conditions for a given function

to be transformable, as well as an inversion formula for the transform. Sufficient

conditions for the inverse transform to exist are provided, and uniqueness of this

inverse function is discussed. Convolution under the transform is then considered.

In particular, we develop an analogue of the Convolution Theorem for arbitrary time

scales and discuss the algebraic properties of the convolution. This naturally leads

to an algebraic identity for the convolution operator, which is a time scale analogue

of the Dirac delta distribution.

Next, we investigate applications of the transform to linear time invariant sys-

tems and before discussing linear time varying systems. The focus is on fundamental

notions of linear system control such as controllability, observability, and realizabil-

ity. Sufficient conditions for a system to possess each of these properties are given

in the time varying case, while these same criteria often become necessary and suf-

ficient in the time invariant case. Finally, several notions of stability are discussed,

and linear state feedback is explored.
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CHAPTER ONE

A Review of the Time Scales Calculus

1.1 Differential Calculus

The time scales calculus was first introduced in the Ph.D. thesis of Stefan

Hilger in 1988 (see [32] and [31]). He begins by defining a time scale to be an

arbitrary closed subset of the reals, where R is given the standard topology. There

is no reason to assume that a time scale be unbounded from above, but we shall

make this blanket assumption since all of the results in the following chapters deal

with time scales of this type.

Let T be a time scale. Define the forward jump operator σ : T→ R by

σ(t) := inf{s ∈ T : s > t},

and the backward jump operator ρ : T→ R by

ρ(t) := sup{s ∈ T : s < t}.

Here, inf ∅ = supT and sup ∅ = inf T. We define the graininess function as the

distance function between successive points in the time scale, and we denote it by

µ : T→ R, where µ(t) = σ(t)− t.

The forward derivative or delta derivative of f : T → R (provided it exists)

is then defined as the number f∆(t) with the property that given any ε > 0, there

exists a neighborhood U of t (i.e., U = (t− δ, t + δ) ∩ T for some δ > 0) such that

∣∣[f(σ(t))− f(s)]− f∆(t)[σ(t)− s]
∣∣ ≤ ε|σ(s)− t| for all s ∈ U.

It is worth noting that this definition is equivalent to the limit

f∆(t) = lim
s→t

f(σ(t))− f(s)

σ(t)− s
=

f(σ(t))− f(t)

µ(t)
,

1
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as long as the difference quotient is interpreted in the limit sense if σ(t) → t. Points

t ∈ T with µ(t) = 0 are termed right-dense, while points with µ(t) > 0 are called

right-scattered. This framework includes two very important cases: namely T = R

and T = Z. It is easy to verify that in these two cases, we have σ(t) = t and σ(t) =

t+1, respectively. In each case, the corresponding derivatives are f∆(t) = f ′(t) and

f∆(t) = ∆f(t), where ∆f(t) := f(t + 1)− f(t) denotes the usual forward difference

operator. Thus, in this sense, any result concerning the time scales calculus will

unify the two classically studied cases.

However, there are many other time scales that can now be studied as well.

For example, any hybrid set can now also be examined. That is, any set containing

points some of which are right-dense with others right-scattered easily fit within the

framework. Thus, Hilger’s calculus will extend the results beyond the cases T = R

and T = Z. The time scale

Pa,b :=
∞⋃

k=0

[k(a + b), k(a + b) + a]

is an example of a hybrid set since

σ(t) =





t, if t ∈
∞⋃

k=0

[k(a + b), k(a + b) + a),

t + b, if t ∈
∞⋃

k=0

{k(a + b) + a},

and therefore

µ(t) =





0, if t ∈
∞⋃

k=0

[k(a + b), k(a + b) + a),

b, if t ∈
∞⋃

k=0

{k(a + b) + a}.

Besides hybrid sets, Hilger’s framework also handles sets which are nonuniformly

spaced unlike T = Z. Indeed, one of the most important examples of a time scale

besides R and Z is the set T = qZ, which is defined for q > 0 as

T = qZ :=

{
qn : n ∈ Z

}
∪ {0}.
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This set is commonly referred to as the quantum time scale, and it has a quantum

calculus that has been studied in the literature (see [7], [6], and [14]). Notice that

this time scale does indeed exhibit hybrid features since t = 0 is right dense and

every other point is right scattered and nonuniformly spaced.

In what follows, we shall give the most pertinent results from the time scales

calculus that will be needed in later chapters. We will focus on the matrix case,

as the scalar case will of course be a special case of the matrix case. A complete

treatment of the calculus can be found in Bohner and Peterson in [8] and [9].

We begin by developing the geometry of the Hilger complex plane. For µ(t) >

0, the Hilger complex numbers, the Hilger real axis, the Hilger alternating axis, and

the Hilger imaginary circle (or simply the Hilger circle) are all respectively defined

as

Cµ :=

{
z ∈ C : z 6= − 1

µ(t)

}

Rµ :=

{
z ∈ Cµ : z ∈ R and z > − 1

µ(t)

}
,

Aµ :=

{
z ∈ Cµ : z ∈ R and z < − 1

µ(t)

}
,

Hµ :=

{
z ∈ Cµ :

∣∣∣∣z +
1

µ(t)

∣∣∣∣ =
1

µ(t)

}
,

and for µ(t) = 0, define C0 := C,R0 := R,H0 := iR, and A0 := ∅. For any z ∈ Cµ,

the Hilger real part of z is given by

Reµ(z) :=
|zµ(t) + 1| − 1

µ(t)
,

while the Hilger imaginary part of z is defined as

Imµ(z) :=
Arg(zµ(t) + 1)

µ(t)
,

where Arg(z) is the principal argument of z. For µ(t) = 0, define Reµ(z) = Re(z)

and Imµ(z) = Im(z). The Hilger purely imaginary number ι̊ω is defined for − π
µ(t)

≤
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Figure 1.1: The Hilger Complex Plane. Points exterior to the circle have positive Hilger
real part, while points interior have negative Hilger real part. Points on the circle have
zero Hilger real part, and are thus called the Hilger purely imaginary numbers.

ω ≤ π
µ(t)

and is given by

ι̊ω =
eiωµ(t) − 1

µ(t)
.

For µ(t) = 0, define ι̊ω := iω. Hilger’s description of the complex plane is shown in

Figure 1.1.

The set Cµ is endowed with a group structure if we define the circle plus

addition on Cµ as

a⊕ b := a + b + abµ(t).

In fact, (Cµ,⊕,ª) is an Abelian group, with

ªz := − z

1 + µ(t)z
.

We then have the following:

Theorem 1.1 ([8]). For z ∈ Cµ, we have z = Reµ(z)⊕ ι̊Imµ(z).

Next, we review a few basics of the time scales (matrix) calculus. We use the

notation Aσ(t) to denote the matrix of functions A(σ(t)). A matrix is right-dense
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continuous (abbreviated rd-continuous) if every entry of A is right-dense continuous.

In the scalar case, we say a function is right-dense continuous if it is continuous at

right-dense points of T and its left-sided limits exist as finite numbers at left-dense

points in T. The set of all such matrices is denoted by

Crd = Crd(T) = Crd(T,Rm×n).

A(t) is a delta differentiable matrix if each entry of A is delta differentiable, in which

case we define

A∆(t) = (a∆
ij)1≤i≤m,1≤j≤n, where A = (aij)1≤i≤m,1≤j≤n.

We shall need to make frequent use of the next identity, so we state it as a theorem:

Theorem 1.2 ([8]). If A is differentiable at t ∈ T, then Aσ(t) = A(t) + µ(t)A∆(t).

The following theorem establishes the delta derivative as a linear operator and

the analogue of the product rule on an arbitrary time scale:

Theorem 1.3 ([8]). Suppose A and B are delta differentiable n × n-matrix-valued

functions. Then

(i) (A + B)∆ = A∆ + B∆;

(ii) (αA)∆ = αA∆ if α is constant;

(iii) (AB)∆ = A∆Bσ + AB∆ = AσB∆ + A∆B;

(iv) (A−1)∆ = −(Aσ)−1A∆A−1 = −A−1A∆(Aσ)−1 if AAσ is invertible;

(v) (AB−1)∆ = (A∆ − AB−1B∆)(Bσ)−1 = (A∆ − (AB−1)σB∆)B−1 if BBσ is

invertible.

In this work, we wish to study solutions of systems of dynamic equations on

the (unbounded) time scale T. That is, we wish to examine solutions of the equation

y∆(t) = A(t)y(t)+f(t), y(t0) = y0, t, t0 ∈ T, y0 ∈ Rn×m, A(t) ∈ R(T,Rn×n).
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To do this, we will need to make appropriate assumptions on the matrix A(t).

We say the matrix A(t) is regressive if the matrix I + µ(t)A(t) is invertible for all

t. In the scalar case, a function f(t) is positively regressive if f is regressive and

1 + µ(t)f(t) > 0 for all t ∈ T. The collection of all regressive matrices is denoted by

R = R(T) = R(T,Rn×n),

while the positively regressive functions are denoted by

R+ = R+(T) = R+(T,R).

We define the operation ⊕ on R as

(A⊕B)(t) = A(t) + B(t) + µ(t)A(t)B(t) for all t ∈ T,

and the operation ª by

(ªA)(t) = −A(t)[I + µ(t)A(t)]−1 for all t ∈ T.

With these operations defined on R, we have the following:

Theorem 1.4 ([8]). (R(T,Rn×n),⊕,ª) is a group. Furthermore, in the scalar case,

(R+(T,R),⊕,ª) is a subgroup of the regressive group.

Theorem 1.5 ([8]). Let A ∈ R be an n× n matrix-valued function on T and suppose

that f : T → Rn is rd-continuous. Let t0 ∈ T and y0 ∈ Rn. Then the initial value

problem (IVP)

y∆(t) = A(t)y(t) + f(t), y(t0) = y0,

has a unique solution y : T→ Rn.

Thus, the preceding theorem establishes existence and uniqueness of solutions

to our dynamic equation. If A is time varying, we shall denote the solution of

Y ∆(t) = A(t)Y (t), Y (t0) = I,
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as Y (t) = ΦA(t, t0), while if A is time invariant, we denote the solution of the

system as eA(t, t0). There are important distinctions between the two notations, as

ΦA(t, t0) ≡ eA(t, t0) if and only if A(t) ≡ A is constant. The usefulness of these two

characterizations can easily be seen on T = R, in which case eA(t, t0) = eA(t−t0). It

is known that on R, there are many differences between solutions of autonomous

systems versus nonautonomous systems which amount to the differences between

ΦA(t, t0) and eA(t−t0) in general.

In the scalar case, for p ∈ R, the solution of

y∆(t) = p(t)y(t), y(t0) = 1,

is denoted by y(t) = ep(t, t0). Hilger proved that the closed form of ep(t, t0) is given

by

ep(t, t0) = exp

(∫ t

t0

Log(1 + µ(τ)p(τ))

µ(τ)
∆τ

)
,

where the ∆t in the integral is used to denote that this is a time scale integral, whose

treatment follows. Before discussing the integral, however, it is worth stating the

following two theorems from Bohner and Peterson [8] which discuss the sign of the

exponential function in the scalar case. In particular, note that the theorems tell us

that ep(t, t0) is positive if p is positively regressive, a fact which we will make use of

later in the discussion on stability.

Theorem 1.6 ([8]). Assume p ∈ R and t0 ∈ T.

(i) If 1 + µp > 0 on T, then ep(t, t0) > 0 for all t ∈ T.

(ii) If 1 + µp < 0 on T, then ep(t, t0) = α(t, t0)(−1)nt for all t ∈ T, where

α(t, t0) := exp

(∫ t

t0

log |1 + µ(τ)p(τ)|
µ(τ)

∆τ

)
> 0

and

nt =





|[t0, t)|, if t ≥ t0,

|[t, t0)|, if t < t0.
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Note that 1 + µ(t)p(t) < 0 for all t ∈ T implies that T contains no right-

dense points. Hence, |[t0, t)|, which represents the number of points in the indicated

interval, will be finite.

Theorem 1.7 (Sign of the Exponential Function, [8]). Let p ∈ R and t0 ∈ T.

(i) If p ∈ R+, then ep(t, t0) > 0 for all t ∈ T.

(ii) If 1 + µ(t)p(t) < 0 for some t ∈ T, then

ep(t, t0)ep(σ(t), t0) < 0.

(iii) If 1 + µ(t)p(t) < 0 for all t ∈ T, then ep(t, t0) changes sign at every point

t ∈ T.

(iv) Assume there exist sets T = {tk : k ∈ N} ⊂ T and S = {sk : k ∈ N} ⊂ T
with

. . . < s2 < s1 < t0 ≤ t1 < t2 < . . .

such that 1 + µ(t)p(t) < 0 for all t ∈ S ∪ T and 1 + µ(t)p(t) > 0 for all

t ∈ T−{S∪T}. Furthermore, if |T | = ∞, then lim
n→∞

tn = ∞, and if |S| = ∞,

then lim
n→∞

sn = −∞. If T 6= ∅ and S 6= ∅, then

ep(·, t0) > 0 on [σ(s1), t1).

If |T | = ∞, then

(−1)kep(·, t0) > 0 on [σ(tk), tk+1] for all k ∈ N.

If |T | = N ∈ N, then

(−1)kep(·, t0) > 0 on [σ(tk), tk+1] for all 1 ≤ k ≤ N − 1

and

(−1)Nep(·, t0) > 0 on [σ(tN),∞).
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If T = ∅ and S 6= ∅, then

ep(·, t0) > 0 on [σ(s1),∞).

If |S| = ∞, then

(−1)kep(·, t0) > 0 on [σ(sk+1), sk] for all k ∈ N.

If |S| = M ∈ N, then

(−1)kep(·, t0) > 0 on [σ(sk+1), sk] for all 1 ≤ k ≤ M − 1

and

(−1)Mep(t, t0) > 0 on (−∞, sM ].

If S = ∅ and T 6= ∅, then

ep(·, t0) > 0 on (−∞, t1].

In particular, the exponential function ep(·, t0) is a real-valued function that is never

equal to zero but can be negative.

1.2 Integral Calculus

To talk about solutions of the equation, we need to develop an integral process

that will act as inverse of the ∆-differential operator. There are many different

ways in which one can integrate: for example, we can use any one of the Cauchy,

Riemann, or Lebesgue integrals, among others. Of most importance to this work is

the Lebesgue integral; we will present its development in the time scale setting here.

We follow the construction given by Guseinov in [26].

Denote by F1 the family of all left closed and right open intervals of T of the

form

[a, b) = {t ∈ T : a ≤ t < b},
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with a, b ∈ T and a ≤ b. We understand [a, a) to be the empty set. The collection F1

forms a semiring of subsets of T. Let m1 : F1 → [0,∞] be the set function defined

on F1 that assigns to each interval [a, b) its length:

m1([a, b)) = b− a.

m1 then becomes a countably additive measure on F1. We denote the Carathéodory

extension of the set function m1 associated with F1 by µ∆, and we call µ∆ the

Lebesgue ∆-measure on T.

It is worth examining the Carathéodory extension µ∆ of m1. We begin by

generating an outer measure m∗
1 on the collection of all subsets of T as follows. Let

E be any subset of T. If there exists at least one finite or countable system of

intervals Vj ∈ F1 for j ∈ N such that E ⊂ ∪jVj, then we set

m∗
1 = inf

∑
j

m1(Vj),

where the infimum is taken over all such Vitali coverings of E by a finite system or

countable system of intervals Vj ∈ F1. If there is no such covering of E, then we set

m∗
1(E) = ∞.

Next, we define the family M(m∗
1) of all m∗

1-measurable subsets of T. A subset

A of T is said to be m∗
1-measurable (or ∆-measurable), if

m∗
1(E) = m∗

1(E ∩ A) + m∗
1(E ∩ AC),

holds for all E ⊂ T, where AC = T − A denotes the complement of A. Note that

the collection M(m∗
1) of all m∗

1-measurable subsets of T is a σ-algebra. Finally, we

take the restriction of m∗
1 to M(m∗

1), which we denote by µ∆. This measure is then

a countably additive measure on M(m∗
1).

Note that if the time scale is finite, then the time scale will have infinite µ∆

measure from Guseinov’s construction. As a consequence, every time scale will have

infinite measure. We will revisit this issue in the next chapter when we discuss the
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uniqueness of the inverse. For now however, we examine some consequences of this

definition:

Theorem 1.8 ([26]). For each t0 ∈ T − {maxT}, the single point set {t0} is ∆-

measurable, and its ∆-measure is given by

µ∆({t0}) = σ(t0)− t0 = µ(t0).

Theorem 1.9 ([26]). If a, b ∈ T and a ≤ b, then

µ∆([a, b)) = b− a and µ∆((a, b)) = b− σ(a).

If a, b ∈ T− {maxT} and a ≤ b, then

µ∆((a, b]) = σ(b)− σ(a) and µ∆([a, b]) = σ(b)− a.

The Lebesgue integral associated with the measure µ∆ on T is called the

Lebesgue ∆-integral, and for a measurable set E ⊂ T and a measurable function

f : E → R, the integral of f over E is denoted by
∫

E

f(t)∆t.

Thus, in terms of the measure theory involved, all of the standard theorems of

general Lebesgue integration theory (including the dominated convergence theorem)

hold also for the Lebesgue ∆-integral.

The next theorem connects the Riemann and Lebesgue integrals. Although

we will not give the treatment of the Riemann ∆-integral here, the interested reader

can find this treatment in [9] or in [26].

Theorem 1.10 ([26]). Let [a, b] be a closed bounded interval in T and let f be a bounded

real-valued function defined on [a, b]. If f is Riemann ∆-integrable from a to b, then

f is Lebesgue ∆-integrable on [a, b), and

R

∫ b

a

f(t)∆t = L

∫

[a,b)

f(t)∆t,

where R and L indicate the Riemann and Lebesgue integrals, respectively.
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For completeness, we now state the fundamental theorem of calculus for the

time scale setting. The utility of the preceding theorem then becomes clear, since

when they all exist, the Lebesgue integral agrees with the Riemann integral which

in turn agrees with the Cauchy integral.

Theorem 1.11 (Fundamental Theorem of Calculus, Part I, [26]). Let f be a function

which is ∆-integrable from a to b. For t ∈ [a, b], define

F (t) =

∫ t

a

f(τ)∆τ.

Then F is continuous on [a, b]. If t0 ∈ [a, b) and if f is continuous at t0 provided t0

is right-dense, then F is ∆-differentiable at t0 and

F∆(t0) = f(t0).

Theorem 1.12 (Fundamental Theorem of Calculus, Part II, [26]). Let f be a ∆-

integrable function on [a, b]. If f has a ∆-antiderivative F : [a, b] → R, then

∫ b

a

f(t)∆t = F (b)− F (a).

For computational purposes, it is often easiest to compute the Riemann inte-

gral, and so it is worth knowing necessary and sufficient conditions under which the

Riemann ∆-integral will exist. The familiar condition is as follows:

Theorem 1.13 ([26]). Let f be a bounded function defined on the finite closed interval

[a, b] of T. Then f is Riemann ∆-integrable from a to b if and only if the set of all

right-dense points of [a, b) at which f is discontinuous is a set of ∆-measure zero.

We conclude our remarks on the time scale integral with two theorems. The

first one gives is the familiar parts formula and the second is an analogue of the

Leibniz rule in a special case.
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Theorem 1.14 (Integration by Parts, [8]). Let u and v be continuous functions on

[a, b] that are ∆-differentiable on [a, b). If u∆ and v∆ are integrable from a to b, then

∫ b

a

u∆(t)v(t)∆t +

∫ b

a

uσ(t)v∆(t)∆t = u(b)v(b)− u(a)v(a).

Theorem 1.15 (Leibniz Rule, [8]). If f and f∆t are continuous, then we have the

following: [∫ t

a

f(t, s)∆s

]∆t

= f(σ(t), t) +

∫ t

a

f∆t(t, s)∆s.

1.3 The Time Scale Exponential Function

With integration now defined, we can examine the exponential in both the

scalar and matrix cases for the time scales T = R and T = Z. On R, where µ ≡ 0,

the ∆-integral is the usual Lebesgue integral, so that in the scalar case,

ep(t, t0) = lim
µ→0+

exp

(∫ t

t0

log(1 + µ(τ)p(τ))

µ(τ)
∆τ

)
= exp

(∫ t

t0

p(τ)dτ

)
,

while in the matrix case for A constant, eA(t, t0) = eA(t−t0). On Z, where µ ≡ 1, the

scalar exponential is

ep(t, t0) = exp

(∫ t

t0

log(1 + p(τ))∆τ

)
= exp

(
t−1∑
t0

log(1 + p(τ))

)
=

t−1∏
τ=t0

(1 + p(τ)),

and in the matrix case for A constant, eA(t, t0) = (I + A)(t−t0). Notice that in the

scalar case, if α is constant, then eα(t, t0) = e(α(t−t0)) and eα(t, t0) = (1 + α)(t−t0),

respectively.

We now return to the fundamental problem of finding solutions to dynamic

equations on time scales. We begin with a theorem on properties of the system

transition matrix ΦA(t, t0). (Note that these properties also hold for eA(t, t0) since

this matrix is simply the transition matrix when A is time invariant.) In what

follows, for a matrix A, A∗ denotes the conjugate transpose of A.
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Theorem 1.16 ([8]). If A,B ∈ R are matrix-valued functions on T, then

(i) Φ0(t, s) ≡ I and ΦA(t, t) ≡ I;

(ii) ΦA(σ(t), s) = (I + µ(t)A(t))ΦA(t, s);

(iii) Φ−1
A (t, s) = Φ∗

ªA∗(t, s);

(iv) ΦA(t, s) = Φ−1
A (s, t) = Φ∗

ªA∗(s, t);

(v) ΦA(t, s)ΦA(s, r) = ΦA(t, r);

(vi) ΦA(t, s)ΦB(t, s) = ΦA⊕B(t, s) if ΦA(t, s) and B(t) commute.

Theorem 1.17 ([8]). If A ∈ R and a, b, c ∈ T, then

[ΦA(c, ·)]∆ = −[ΦA(c, ·)]σA

and ∫ b

a

ΦA(c, σ(t))A(t)∆t = ΦA(c, a)− ΦA(c, b).

With this foundation, we can present a useful result for solving first order

dynamic IVPs:

Theorem 1.18 (Variation of Constants, [8]). Let A ∈ R be an n × n-matrix-valued

function on T and suppose that f : T → Rn is rd-continuous. Let t0 ∈ T and

y0 ∈ Rn. Then the initial value problem

y∆(t) = A(t)y(t) + f(t), y(t0) = y0,

has a unique solution y : T→ Rn. Moreover, this solution is given by

y(t) = ΦA(t, t0)y0 +

∫ t

t0

ΦA(t, σ(τ))f(τ)∆τ.

The next concept that we will use frequently in later chapters is the notion of

exponential stability. We will begin with the results obtained by Pötzsche, Siegmund,

and Wirth in [38]. In their work, they define exponential stability as follows:
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Definition 1.1 ([38]). For t, t0 ∈ T and x0 ∈ Rn, the system

x∆(t) = A(t)x(t), x(t0) = x0, A(t) ∈ Crd(T,Rn×n), (1.1)

is said to be

(i) exponentially stable if there exists a constant α > 0 such that for every t0 ∈ T
there exists a K = K(t0) ≥ 1 with

||ΦA(t, t0)|| ≤ Ke−α(t−t0), for t ≥ t0,

(ii) uniformly exponentially stable if K can be chosen independently of t0 in the

definition of exponential stability,

(iii) robustly exponentially stable if there is an ε > 0 such that the exponential

stability of (1.1) implies the exponential stability of x∆(t) = B(t)x(t) for

any rd-continuous B : T → Kn×n with sup
t∈T

||B(t) − A(t)|| ≤ ε. (Here, K

is the complex or real field.) In particular, if A is constant, we call (1.1)

robustly exponentially stable if for all matrices B in a suitable neighborhood

of A the corresponding system is exponentially stable.

Pötzsche, Siegmund, and Wirth show that the three definitions are in fact

necessary: that is, the three notions do not have to coincide with each other even

in the time invariant case. They then proceed to prove a very powerful theorem in

time scale stability theory:

Theorem 1.19 ([38]). Let T be a time scale which is unbounded above and let λ ∈ C.

The scalar equation

x∆(t) = λx(t), x(t0) = x0, λ ∈ C,

is exponentially stable if and only if one of the following conditions is satisfied for

arbitrary t0 ∈ T:
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(i) γ(λ) := lim sup
T→∞

1

T − t0

∫ T

t0

lim
s↘µ(t)

log |1 + sλ|
s

∆t < 0,

(ii) ∀T ∈ T : ∃t ∈ T with t > T such that 1 + µ(t)λ = 0,

where we use the convention log 0 = −∞ in (i).

In light of this theorem, they define the set of exponential stability.

Definition 1.2 ([38]). Given a time scale T which is unbounded above, we define for

arbitrary t0 ∈ T,

SC(T) := {λ ∈ C : lim sup
T→∞

1

T − t0

∫ T

t0

lim
s↘µ(t)

log |1 + sλ|
s

∆t < 0},

and

SR(T) := {λ ∈ R|∀T ∈ T : ∃t ∈ T with t > T such that 1 + µ(t)λ = 0}.

Then the set of exponential stability for the time scale T is defined by

S(T) = SC(T) ∪ SR(T).

This set can often be very difficult to compute for an arbitrary time scale T.

Thus, while in theory the theorem is strong, in practice it has limitations. With

this difficulty in mind, Hoffacker and Gard proved in [22] that there is a particularly

nice subset of S(T) to work with regardless of the time scale. We call this region

the Hilger circle, denote it by H, and define the region as

H =

{
z ∈ C :

∣∣∣∣∣z +
1

µ(t)

∣∣∣∣∣ <
1

µ(t)

}
.

(Observe that in this region, the Hilger real part of z is negative.) Strictly speaking,

this definition is an abuse of the language as the set H is the interior of the Hilger cir-

cle previously defined. It is worth noting if we choose λ ∈ R+, then by Theorem 1.6

and Theorem 1.7, the exponential will decay in a positive, monotonic manner to the

zero state. If we choose λ ∈ (Hmin − R+) ∩ R, where Hmin is the smallest Hilger
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circle (that is, the Hilger circle corresponding to µmax), then the exponential will be

real-valued, alternate in sign, and tend to the zero state. Every other λ ∈ H will

cause the exponential to be complex-valued in general and go to the zero state as

t →∞.

There are a few things worth noting here. First, the set SR(T) is really the set

of nonregressivity for the exponential, and since we will only concern ourselves with

the regressive case, we only need to focus on SC(T). Second, Pötzsche, Siegmund,

and Wirth with this theorem have shown that elements of the stability set really

only need to lie in the Hilger circle on average and not necessarily for all time t.

Third, notice that the members of S(C) have negative real part of necessity since

their Hilger real part is negative on average. (If the real part of λ were positive,

then it would be impossible for the Hilger real part to be negative on average.)

Finally, although not obvious, the stability region in general can be disconnected,

but Pötzsche, Siegmund, and Wirth do show that connected components are in fact

simply connected (see [38]).

Pötzsche, Siegmund, and Wirth next define a function λ : T → R to be

uniformly regressive if there exists a γ > 0 such that

γ−1 ≥ |1 + µ(t)λ(t)| for t ∈ T.

This leads to the following result.

Theorem 1.20 ([38]). Let T be a time scale that is unbounded above and let A ∈ Kn×n

be regressive. Then the following hold:

(i) If the system (1.1) is exponentially stable, then spec(A) ⊂ SC(T).

(ii) If all eigenvalues λ of A are uniformly regressive, and if spec(A) ⊂ SC(T),

then (1.1) is exponentially stable.

As is evidenced by the preceding discussion, Pötszhe, Siegmund, and Wirth

only deal with the autonomous case, in which they show that eigenvalue placement
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is sufficient for exponential stability of the system. DaCunha, in [15], was more

interested in the regressive time varying system

x∆(t) = A(t)x(t), x(t0) = x0, A(t) ∈ R(T,Rn×n), (1.2)

where eigenvalue placement in general is not enough to guarantee stability. However,

he takes as his definition of exponential stability the special case of the stability set

given by Pötzsche, Siegmund, and Wirth in which all eigenvalues are positively

regressive, a restriction which always places the eigenvalues in the Hilger circle H.

This is evidenced in the following definition taken from [15]:

Definition 1.3 (DaCunha, [15]). The regressive time varying system

x∆(t) = A(t)x(t), x(t0) = x0, A(t) ∈ R(T,Rn×n),

is called uniformly exponentially stable if there exist constants γ, λ > 0 with−λ ∈ R+

such that for any t0 and x(t0), the corresponding solution satisfies

||x(t)|| ≤ ||x(t0)||γe−λ(t, t0), t ≥ t0.

Thus, DaCunha’s definition of exponential stability is much weaker than that

of Pötzsche, Siegmund, and Wirth in the sense that the latter implies the former

but not conversely. However, DaCunha’s definition allows for many standard theo-

rems concerning stability to follow through into the time scale case. DaCunha uses

the second method of Lyapunov to gain his results. He begins by examining the

derivative of the scalar function ||x(t)||2 which plays the role of the energy of the

system. Upon taking the delta derivative of this function, DaCunha investigates

the existence of a regressive symmetric matrix Q(t) that will make the symmetric

form (xQ(t)xT )∆ negative definite in turn giving stability of the system. This line

of reasoning yields the following theorem.
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Theorem 1.21 (Lyapunov Stability Criterion I, [15]). The regressive time varying

linear dynamic system

x∆(t) = A(t)x(t), x(t0) = x0, A(t) ∈ R(T,Rn×n),

is uniformly exponentially stable if there exists a symmetric matrix Q(t) ∈ C1
rd(T,Rn×n)

such that for all t ∈ T

(i) ηI ≤ Q(t) ≤ ρI,

(ii) AT (t)Q(t) + (I + µ(t)AT (t))(Q∆(t) + Q(t)A(t) + µ(t)Q∆(t)A(t)) ≤ −νI,

where ν, η, ρ > 0 and −ν
ρ
∈ R+.

Although DaCunha did not address the following versions of the previous

theorem, their proofs are the same.

Theorem 1.22 (Lyapunov Stability Criterion II). The regressive time varying linear

dynamic system

x∆(t) = A(t)x(t), x(t0) = x0, A(t) ∈ R(T,Rn×n),

is uniformly exponentially stable if there exists a symmetric matrix Q(t) ∈ C1
rd(T,Rn×n)

such that for all t ∈ T

(i) ηI ≤ Q(t) ≤ ρI,

(ii) AT (t)Q(σ(t))[I + µ(t)A(t)] + Q∆(t)[I + µ(t)A(t)] + Q(t)A(t) ≤ −νI,

where ν, η, ρ > 0 and −ν
ρ
∈ R+.

Theorem 1.23 (Lyapunov Stability Criterion III). The regressive time varying linear

dynamic system

x∆(t) = A(t)x(t), x(t0) = x0, A(t) ∈ R(T,Rn×n),

is uniformly exponentially stable if there exists a symmetric matrix Q(t) ∈ C1
rd(T,Rn×n)

such that for all t ∈ T
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(i) ηI ≤ Q(t) ≤ ρI,

(ii)
[
(I + µ(t)AT (t))Q(σ(t))(I + µ(t)A(t))−Q(t)

]
/µ(t) ≤ −νI,

where ν, η, ρ > 0 and −ν
ρ
∈ R+.

It is this last version of the result that we will need in the section on control.

Note that if µ → 0+, then in the limit, the expression

[
(I + µ(t)AT (t))Q(σ(t))(I + µ(t)A(t))−Q(t)

]
/µ(t),

reduces to

AT (t)Q(t) + Q(t)A(t) + Q′(t),

a familiar expression for stability in the continuous case. If µ ≡ 1, the expression

becomes

(I + AT (t))Q(t + 1)(I + A(t))−Q(t),

which is a shifted version of the corresponding result in the discrete case. Thus, the

result does unify the two cases and extends them to other time scales as well.

We will also need the following results from DaCunha in [15] to prove various

theorems in the chapter on control.

Theorem 1.24 ([15]). The regressive dynamic equation

x∆(t) = A(t)x(t), x(t0) = x0, A(t) ∈ R(T,Rn×n),

is uniformly exponentially stable if and only if there exist λ, γ > 0 with −λ ∈ R+

such that

||ΦA(t, t0)|| ≤ γe−λ(t, t0),

for all t ≥ t0 with t, t0 ∈ T.
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Theorem 1.25 ([15]). Suppose there exists a constant α such that for all t ∈ T, ||A(t)|| ≤
α. Then the regressive linear state equation

x∆(t) = A(t)x(t), x(t0) = x0, A(t) ∈ R(T,Rn×n),

is uniformly exponentially stable if and only if there exists a finite β > 0 such that

∫ t

τ

||ΦA(t, σ(s))||∆s ≤ β,

for all t, τ with t ≥ σ(τ).

The last two theorems of DaCunha that we need can be found in [17]. The

first result relies on the time scale polynomials hk(t, 0). These functions are defined

recursively for k ∈ N0 by

h0(t, s) ≡ 1 for all s, t ∈ T,

hk+1(t, s) =

∫ t

s

hk(τ, s)∆τ for all s, t ∈ T.

Theorem 1.26 ([17]). Suppose that A is a constant matrix. Then the transition matrix

for (1.1) is

ΦA(t, t0) ≡ eA(t, t0),

where the matrix exponential is defined by the power series

eA(t, t0) =
∞∑
i=0

Aihi(t, t0),

which converges uniformly on [−T, T ]T for any T > 0.

Theorem 1.27 ([17]). For the system (1.1) with A constant, there exist scalar func-

tions γ0(t, t0), . . . , γn−1(t, t0) ∈ C∞
rd (T,R) such that the unique solution has represen-

tation

eA(t, t0) =
n−1∑
i=0

Aiγi(t, t0).
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1.4 Other Time Scale Functions

We conclude this chapter by introducing a few of the elementary functions on

arbitrary time scales and the dynamic equations that they solve. We have already

discussed the exponential function and the first order IVP that it solves. We gave

the definition of the polynomials hk(t, t0) above. The critical thing to observe about

these functions is that for each k ∈ N, hk(t, t0) is the unique solution to the IVP

y∆(t) = hk−1(t, t0), y(t0) = 0.

The time scale trigonometric functions sinα(t, t0) and cosα(t, t0), for α ∈ Crd and

µα2 ∈ R are defined as

cosα(t, t0) =
eiα(t, t0) + e−iα(t, t0)

2
and sinα(t, t0) =

eiα(t, t0)− e−iα(t, t0)

2i
.

Bohner and Peterson in [8] show that these functions form a fundamental solution

set of the second order dynamic equation

y∆∆(t) + α2y(t) = 0.

As a consequence of the definition of the two functions, Euler’s formula remains true

on the arbitrary time scale: that is,

eiα(t, t0) = cosα(t, t0) + i sinα(t, t0).

Further, the following theorem holds.

Theorem 1.28 ([8]). Let p ∈ Crd. If µp2 ∈ R, then we have

cos∆
p (t, t0) = −p(t) sinp(t, t0) and sin∆

p (t, t0) = p(t) cosp(t, t0),

and

cos2
p(t, t0) + sin2

p(t, t0) = eµp2(t, t0).
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The time scale hyperbolic functions sinhα(t, t0) and coshα(t, t0), for α ∈ Crd

and µα2 ∈ R are defined as

coshα(t, t0) =
eα(t, t0) + e−α(t, t0)

2
and sinα(t, t0) =

eα(t, t0)− e−α(t, t0)

2
.

The hyperbolic functions will form a fundamental solution set for the equation

y∆∆(t)− α2y(t) = 0.

Their calculus is as follows.

Theorem 1.29 ([8]). Let p ∈ Crd. If −µp2 ∈ R, then we have

cosh∆
p (t, t0) = p(t) sinhp(t, t0) and sinh∆

p (t, t0) = p(t) coshp(t, t0),

and

cosh2
p(t, t0)− sinh2

p(t, t0) = e−µp2(t, t0).

With the necessary time scale preliminaries now established, we are in position

to begin with the first focus of this dissertation which is the Laplace transform.



CHAPTER TWO

Laplace Transform

2.1 An Overview of the Cases T = R and T = Z

The Laplace transform is a tool that has been to study differential equations

for almost two centuries, although when Laplace first used the transform he did not

use it in this fashion. (It is not commonly known that it was actually Euler who

discovered it, and Lagrange who fitted the integral into probability theory for which

Laplace used it.) The tool has become quite popular in engineering because of its

ease of use and utility in understanding and manipulating LTI systems. Indeed, the

transform will “algebratize” the problem in the sense that it allows the analyst to

understand sophisticated phenomena occurring by examining what is happening in

the frequency domain through investigating the system’s transfer function rather

than thinking about solutions in the state space, which is given in the time domain.

This allows one to design systems with favorable attributes such as stability in the

frequency domain by simply effecting things such as pole placement.

In the continuous or (in the engineering vernacular) analogue case, the (uni-

lateral) Laplace transform of f : R→ R is defined by

L{f}(z) = F (z) =

∫ ∞

0

e−ztf(t)dt, (2.1)

where z ∈ C is chosen so that the integral converges absolutely. It is known (see

for example [5]) that a sufficient condition for the integral to converge is for f to be

piecewise continuous of exponential order with constant c > 0, in which case if we

choose any z ∈ C with Re(z) > c, then the integral will converge absolutely. If we

use the definition of the transform and integration by parts, then it is easy to show

that

L{f ′}(z) = zL{f}(z)− f(0),

24
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and using an induction argument,

L{f (n)}(z) = znL{f}(z)− zn−1f(0)− zn−2f ′(0)− · · · − f (n−1)(0).

Of course, it is this structure that allows one to solve an n-th order differential equa-

tion with constant coefficients since the transform is a linear operator. Transforms

of many of the elementary functions commonly studied in calculus are readily com-

puted, and so if one is justified in associating a function with its transform, then

one can obtain a solution to the equation in question quite easily.

Surprisingly, the question of the uniqueness of the inverse took a century to

answer. It was not until 1916 when Thomas John I’Anson Bromwich in [11] arrived

at his now famous result after making the methods of Oliver Heaviside (see [27], [28],

and [29]) rigorous in terms of the Laplace integral that this problem was solved when

the right meaning of “uniqueness” was given. In particular, Bromwich was familiar

with Lebesgue’s work in measure theory and the integral, and so Bromwich knew

that for f and g differing on a set of measure zero, then it is possible for f and g

to have the same transform. However, if we redefine uniqueness to mean that f = g

almost everywhere, then Bromwich showed that for any analytic function F (z) in

the half-plane Re(z) > c for some real c > 0, we have that if the integral

L−1{F} =
1

2πi

∫ c+i∞

c−i∞
eztF (z)dz

converges absolutely, then there exists some real-valued piecewise continuous func-

tion f : R → R with f(t) of exponential order with constant c > 0 having Laplace

transform of F (z). (For the reader interested in the history of the transform, see

[30] and the references contained therein.)

In this setting, Bromwich indeed showed that it is permissible to associate a

function with its transform. The inversion process is a linear operator, and so in

algebraic terms there is one fundamental question remaining: what function has

transform F (z)G(z)? The answer is clearly not the product of f and g, since we
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know that the integral does not evolve in this fashion. The answer to the question

lies in the convolution product f ∗ g, which is given by

(f ∗ g)(t) =

∫ t

0

f(τ)g(t− τ)dτ.

It is straightforward to prove that this product is commutative and associative. It is

also well known that the product has an identity element vested in the Dirac delta

functional, which as its name suggests, lives in the space of distributions rather than

the space of functions.

By the late 1940s/early 1950s, the electrical engineering community began

investigating a discrete or digital version of the (unilateral) Laplace transform; that

is, when the domain of the function is not R but rather Z. The first appearance of

the transform in its modern form was given by Jury in [34]. This transform is now

commonly known as the (unilateral) Z-transform and is given by

Z{f}(z) = F (z) =
∞∑

k=0

f(k)z−k.

The Z-transform is a linear operator as well, and the shifts of functions have trans-

forms that are related to the transforms of the unshifted functions, much in the same

manner as the Laplace transforms of derivatives are related the transforms of the

original functions in the continuous case. Indeed,

Z[f(k − 1)] = z−1Z[f(k)],

Z[f(k + 1)] = zZ[f(k)]− zf(0).

It is well known (see for example [36]) that if |f(t)| ≤ Kαt for K, α > 0 constant,

then the Z-transform of f will exist. By using the shifting property of the transform

previously mentioned, we can solve constant coefficient linear difference equations,

much in the same manner as we do in using the Laplace transform to solve differential

equations. As for uniqueness in the discrete case, for the unilateral transform it can
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be shown that if f and g have the same transform, then f = g. The Bromwich

inversion formula in this case becomes

f(k) = Z−1{F (z)} =
1

2πi

∮

C

F (z)zk−1dz,

where C is a counterclockwise path encircling the origin and lies entirely in the region

of convergence of F (z). (If f is bounded as above, then the region of convergence

will be |z| > α.)

Again, it is worth asking what function has transform F (z)G(z). The answer

is found in the convolution product. For f, g : N0 → R, their convolution product is

defined as

(f ∗ g)(k) =
k∑

j=0

f(k − j)h(j).

We then have

Z[f ∗ g] = Z[f ]Z[g].

The convolution product on Z is commutative and associative as well, but the prod-

uct has an identity that is a function given by the Kronecker delta function.

Furthermore, there are some striking similarities between the two transforms.

For utility purposes, tables are commonly used in both cases to associate a func-

tion with its inverse instead of using Bromwich’s inversion integrals, which can be

complicated to compute in general. However, even though there are nice relation-

ships between the two transforms, the tables for “corresponding” functions can be

quite different. For example, the Laplace transform of the function f(t) = cos(αt)

is F (z) = z
z2+α2 . The same function has a z-transform of Z(z) = 1−z−1 cos(α)

1−2z−1−cos(α)+z−2 .

Thus, the same function has drastically different transforms corresponding to the

two different domains.

A natural question here is: Does there exist one transform that will give rise

to the usual Laplace transform when the domain is R and to the Z-transform when

the domain is Z? That is, is it possible to unify these two cases? Secondly, we would
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certainly like a transform that would work on any domain that we choose between

these extremes, so that we can extend the transform as well to an arbitrary time

scale.

2.2 Introduction to the Arbitrary Time Scale Setting

In their initial work on the subject, Bohner and Peterson [10] define the Laplace

transform of the time scale function f as follows:

Definition 2.1 ([10]). For f : T → R, the Laplace transform of f , denoted by L{f}
or F (z), is given by

L{f}(z) = F (z) =

∫ ∞

0

f(t)gσ(t) ∆t, (2.2)

where g(t) = eªz(t, 0).

We will assume that T is unbounded above and 0 ∈ T. Bohner and Peterson go

on to state that the transform is defined for some appropriate collection of complex

numbers z ∈ C for which the integral converges and give no inversion formula for the

transform. Instead, they give the transform of the elementary functions and show

the uniqueness of their transforms by using the uniqueness of solutions to ordinary

dynamic equations. Hence, the method is actually a formal one.

We wish to justify the method. Thus, the goal of this chapter is first to quantify

a subset of the complex plane for which the integral converges; that is, establish a

region of convergence in the complex plane for (2.2). Furthermore, we provide a

relatively simple inversion formula and show that inverses are uniquely determined

by it. Finally, a notion of convolution arises and its algebraic structure is explored.

In this process, the identity element is determined to be the appropriate analogue

of the Dirac delta functional.

Before we begin with the justification, it is worth examining the definition for

the cases T = R and T = Z. If T = R, then we know that σ(t) = t, eªz(t, 0) = e−zt
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and the delta integral is the usual continuous Lebesgue integral. Thus, we have that

LT{f} =

∫ ∞

0

eσ
ªz(t, 0)∆t =

∫ ∞

0

e−ztf(t)dt = LR{f},

so that for T = R the time scale version agrees with the usual version of the Laplace

transform.

For T = Z, we have σ(t) = t + 1, eªz(t, 0) = (1 + z)−t, and the delta integral

in this case is simply a sum. Therefore, it follows that

LT{f} =

∫ ∞

0

eσ
ªz(t, 0)f(t)∆t =

∞∑
t=0

(1 + z)−(t+1)f(t) =
Z[f ](z + 1)

z + 1
,

so that for T = Z, the time scale Laplace transform is not exactly the Z-transform

of f , but a shift of it. These computations show that if we can justify the method

in general, we will have accomplished our goal of unifying the two cases. However,

we can also extend the results to any other time scale T (with bounded graininess)

that we wish as our justification will not rely upon the underlying domain.

One question that arises is: Does the time scale Laplace transform preserve an

algebraic structure on derivatives? The answer to this question is affirmative since

an application of the time scales parts formula (Theorem 1.14) reveals

L{f∆n} =

∫ ∞

0

eσ
ªz(t, 0)f∆n

(t)∆t = znL{f}(z)−
n−1∑
j=0

zjf∆n−j−1

(0),

provided the integral converges. For completeness, we state the state and prove the

preceding result for the case n = 1, which can be found in [8] and [10]. An induction

argument then shows the result for arbitrary n ∈ N. (For the theorem, we need

for x∆ to be regulated. A time scale function is said to be regulated if all limits

exist as finite numbers at left-dense and right-dense points.) To prove the result, we

shall need a lemma whose proof we shall not give here, but it can be found in the

aforementioned works.

Lemma 2.1 ([10]). If z ∈ C is regressive, then

eσ
ªz(t, 0) = −(ªz)(t)

z
eªz(t, 0).
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Theorem 2.1 (Transform of Derivatives, [10]). Assume x : T→ C is such that x∆ is

regulated. Then

L{x∆}(z) = zL{x}(z)− x(0)

for those regressive z ∈ C satisfying

lim
t→∞

{x(t)eªz(t, 0)} = 0.

Proof. As previously mentioned, by the parts formula and Lemma 2.1,

L{x∆}(z) =

∫ ∞

0

x∆(t)eσ
ª(t, 0)∆t

= [x(t)eªz(t, 0)]t→∞t=0 −
∫ ∞

0

x(t)(ªz)(t)eªz(t, 0)∆t

= −x(0) + z

∫ ∞

0

x(t)eσ
ªz(t, 0)∆t

= zL{x}(z)− x(0),

provided the integral converges, which will happen when x∆ is regulated.

It is most likely puzzling at first glance as to why the same algebraic structure

is preserved for the shifted version of the transform on Z compared with the usual

Z-transform in this domain. The answer lies in the fact that the Z-transform is

usually applied to the recursive form of the equation rather than the difference

form. The time scale analysis always deals with the difference form, and so any

transform that we define should take this information into account, as Bohner and

Peterson’s definition does for the Laplace transform.

We begin by giving a sufficient condition that characterizes those functions that

are transformable. We have already seen that on R, the functions of exponential

order are a sufficient class for this purpose, while on Z, a sufficient class is given by

the class of functions f(t) with |f(t)| ≤ Kαt. Thus, in both of the known cases,

functions that are bounded by exponential functions are transformable. As the next

definition and theorem show, this is in fact true in general.
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Definition 2.2. The function f : T → R is said to be of exponential type I if there

exists constants M, c > 0 such that |f(t)| ≤ Mect. Furthermore, f is said to be of

exponential type II if there exists constants M, c > 0 such that |f(t)| ≤ Mec(t, 0).

The time scale exponential function itself is type II. In their work on the

stability of the time scale exponential function, Pötzsche, Siegmund, and Wirth [38]

show that the time scale polynomials hk(t, 0) are type I. It turns out that as an easy

application of Theorem 1.26, one can show that type II functions are in fact type I.

Recall that throughout this work, we will assume that T is a time scale that

is unbounded above with bounded graininess, that is, µmin ≤ µ(t) ≤ µmax < ∞ for

all t ∈ T. We set µmin = µ∗ and µmax = µ∗.

To give an appropriate domain for the transform, which of course is tied to

the region of convergence (ROC) of the integral in (2.2), for any c > 0 define the set

D = {z ∈ C : Reµ(z) > Reµ(c) for all t ∈ T}.

Notice that this set is nonempty since the collection of all z ∈ C with Reµ∗(z) >

Reµ∗(c) is a nonempty subset of D. (This last statement follows since for fixed

z, the function f(µ) = Reµ(z) is an increasing function of µ. In particular, the

set of all complex z with Re(z) > c is a subset of the collection of all z with

Reµ∗(z) > Reµ∗(c).) Note that if µ∗ = 0, then this set is a right half plane; see

Figure 2.1. In fact, there are a couple of equivalent formulations of the set D.

Recall from Chapter 1 that under the assumption that T has bounded graininess,

Pötzsche, Siegmund, and Wirth [38] as well as Hoffacker and Gard [22] show that

by choosing λ ∈ H, where H denotes the Hilger circle given by

H = Ht =

{
z ∈ C :

∣∣∣∣∣z +
1

µ(t)

∣∣∣∣∣ <
1

µ(t)

}
,

we obtain limt→∞ eλ(t, 0) = 0. This limit condition will play a crucial role in the

analysis of our transform. (Note, however, that the expression for the transform
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H
max

H
min

H
t

Re
µ

∗

z = c

H
max

H
min

H
t

Re
µ

∗

z = c

Figure 2.1: The region of convergence is shaded. On the left, the µ∗ = 0 case. On the
right, the µ∗ 6= 0 case. In the latter, note our proof of the inversion formula is only valid
for Re z > c, i.e. the right half plane bounded by this abscissa of convergence even though
the region of convergence is clearly a superset of this right half plane.

has a slight complication since the function ªz is time varying and not constant.

Fortunately, this is only a minor problem to overcome as we shall see.) One can

characterize D in the following ways.

D = {z ∈ C : Reµ(z) > Reµ(c) for all t ∈ T}

= {z ∈ C : z ∈ H{
max and z satisfies Reµ∗(z) > Reµ∗(c)}

= {z ∈ C : ªz ∈ H and Reµ(z) > Reµ(c) for all t ∈ T},

whereH{
max denotes the complement of the closure of largest Hilger circle correspond-

ing to µ∗; see Figure 2.2. This last equality is included to highlight the connection

between the Hilger circle and the region of convergence. Furthermore, if z ∈ D, then

ªz ∈ Hmin ⊂ Ht since for all z ∈ D, ªz satisfies the inequality

∣∣∣∣ªz +
1

µ∗

∣∣∣∣ <
1

µ∗
.

The choice of D is not arbitrary. To make the integral converge, we must choose

a region in which the exponential decays faster than the function being transformed

grows. If f is of exponential type, then our claimed D is precisely the region in

which this happens, as the next theorem establishes.
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H
max

H
min

H
t

Figure 2.2: Time varying Hilger circles. The largest, Hmax has center −1/µmin while the
smallest, Hmin has center −1/µmax. In general, the Hilger circle at time t is denoted by Ht

and has center 1/µ(t). The exterior of each circle is shaded representing the corresponding
regions of convergence (with respect to the transform).

Theorem 2.2 (Domain of the Laplace Transform). The integral
∫∞
0

eσ
ªz(t, 0)f(t) ∆t

converges absolutely for z ∈ D if f(t) is of exponential type II with exponential

constant c.

Proof. For z ∈ D, we have

∣∣∣∣
∫ ∞

0

eσ
ªz(t, 0)f(t) ∆t

∣∣∣∣ ≤
∫ ∞

0

∣∣eσ
ªz(t, 0)f(t)

∣∣ ∆t

≤ M

∫ ∞

0

∣∣∣∣
1

1 + zµ(t)

∣∣∣∣ |eªz(t, 0)ec(t, 0)| ∆t

≤ M

|1 + µ∗z|
∫ ∞

0

|eªz⊕c(t, 0)| ∆t

=
M

|1 + µ∗z|
∫ ∞

0

exp

(∫ t

0

log |1 + µ(τ)(ªz ⊕ c)|
µ(τ)

∆τ

)
∆t

=
M

|1 + µ∗z|
∫ ∞

0

exp




∫ t

0

log
∣∣∣ 1+µ(τ)c
1+µ(τ)z

∣∣∣
µ(τ)

∆τ


 ∆t

≤ M

1 + µ∗c

∫ ∞

0

e−αtdt

≤ M

α
,

where α =

∣∣∣∣∣∣
log

∣∣∣ 1+µ∗c
1+µ∗z

∣∣∣
µ∗

∣∣∣∣∣∣
.
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The same estimates used in the proof of the preceding theorem can be used

to show that if f(t) is of exponential type II with constant c and Reµ(z) > Reµ(c),

then limt→∞ eªz(t, 0)f(t) = 0.

With a ROC for the integral now defined, next we examine transforms of some

of the elementary functions and their corresponding regions of convergence. We start

with the exponential function itself. (Note that the computations that follow can

all be found in [8] and [10]).

Example 2.1. Obviously, eα(t, t0) is of type II with a corresponding ROC for the

integral given by Reµ∗(z) > Reµ∗(|α|). Using the group property of the exponential

function in the scalar case yields

L{eα(t, 0)} =

∫ ∞

0

eσ
ªz(t, 0)eα(t, 0)∆t

=

∫ ∞

0

1

1 + µ(t)z
eαªz(t, 0)∆t

=
1

α− z

∫ ∞

0

α− z

1 + µ(t)z
eαªz(t, 0)∆t

=
1

α− z

∫ ∞

0

(αª z)(t)eαªz(t, 0)∆t

=
1

α− z
[eαªz(t, 0)]t→∞t=0

=
1

z − α
,

with the integral converging in Reµ∗(z) > Reµ∗(|α|).

Example 2.2. The transform of the function f(t) ≡ 1 can be found by using Lemma 2.1,

once we note that this function is of exponential type II with ROC Reµ∗(z) >

Reµ∗(0) = 0. With this information, it then follows that

L{1}(z) =

∫ ∞

0

1 · eσ
ªz(t, 0)∆t

= −1

z

∫ ∞

0

(ªz)(t)eªz(t, 0)∆t

= −1

z
[eªz(t, 0)]t→∞t=0

=
1

z
, Reµ∗(z) > 0.
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Before examining the transform of the time scale polynomials hk(t, 0), we will

need a theorem that relates the transform of the integral of a function with the

transform of the function itself. To this end, the proof of Theorem 2.1 shows that

the ROC of the derivative f∆ will be the same as the ROC for f . Thus, the ROC

of f∆n
will be the same as the ROC of f∆n−1

for all n, which implies that f and all

of its derivatives will have the same ROC. Thus, we obtain the following.

Theorem 2.3 ([10]). Assume x : T→ C is regulated and transformable with region of

convergence C ⊂ C. If

X(t) :=

∫ t

0

x(τ)∆τ,

for t ∈ T, then

L{X}(z) =
1

z
L{x}(z),

for those regressive z 6= 0 ∈ C.

Proof. Using the parts formula and Lemma 2.1, we obtain

L{X}(z) =

∫ ∞

0

X(t)eσ
ªz(t, 0)∆t

= −1

z

∫ ∞

0

X(t)(ªz)(t)eªz(t, 0)∆t

= −1

z

{
−X(0)−

∫ ∞

0

x(t)eσ
ªz(t, 0)∆t

}

=
1

z
L{x}(z),

provided z 6= 0 ∈ C.

We will return to this result when we talk about convolution and give an easier

proof of it.

Example 2.3. For the time scale polynomials hk(t, 0), k ∈ N0, we have

L{hk(t, 0)}(z) =
1

zk+1
, (2.3)
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for all regressive z in the region Reµ∗(z) > Reµ∗(0) = 0. This ROC comes from

noting that for t ≥ 0, hk(t, 0) is of exponential type II with constant c for all c > 0.

This can be shown either by using the time scales version of L’Hospital’s Rule (see

[8]), or by using Theorem 1.26 in the scalar case. Using the latter, we see that for

c > 0,

ckhk(t, 0) ≤
∞∑
i=0

cihi(t, 0) = ec(t, 0),

so that hk(t, 0) ≤ c−kec(t, 0). We prove this claim by induction. First note that for

z in the ROC,

lim
t→∞

{hi(t, 0)eªz(t, 0)} = 0,

for 0 ≤ i ≤ k. We showed in Example 2.2 that the claim is true for i = 0. Now

assume that 1 ≤ i < k and (2.3) holds with i replaced by i−1. Then by Theorem 2.3,

L{hi(t, 0)}(z) = L
{ ∫ t

0

hi−1(τ, 0)∆τ

}
(z)

=
1

z
L{hi−1(t, 0)}(z)

=
1

zi+1
.

Thus, the claim follows for all z in the ROC given by Reµ∗(z) > 0.

Example 2.4. Since we know the transform of eα(t, 0) by Example 2.1, we can use the

linearity of the transform to find the transforms of the trigonometric and hyperbolic

functions defined in Chapter 1. Our earlier remarks concerning the ROC of a function

and the ROC of its derivative being equivalent imply that we only need to find the

ROC for the functions f(t) = cosα(t, 0) and f(t) = coshα(t, 0) since by Theorem 1.28

and Theorem 1.29, their derivatives are just the functions f(t) = −α sinα(t, 0) and

f(t) = α sinhα(t, 0), respectively. Thus, we first note that an immediate consequence

of Theorem 1.26 in the scalar case is that |eα(t, 0)| ≤ e|α|(t, 0). Hence,

| coshα(t, 0)| =
∣∣∣∣
eα(t, 0) + e−α(t, 0)

2

∣∣∣∣ ≤ e|α|(t, 0),
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and likewise

| cosα(t, 0)| =
∣∣∣∣
eiα(t, 0) + e−iα(t, 0)

2

∣∣∣∣ ≤ e|α|(t, 0).

Consequently, all four trigonometric and hyperbolic functions are of exponential type

II with constant |α|. Using the linearity of the transform, we see

L{coshα(t, 0)}(z) = L
{

eα(t, 0) + e−α(t, 0)

2

}
(z)

=
1

2

(
1

z − α
+

1

z + α

)

=
z

z2 − α2
,

L{cosα(t, 0)}(z) = L
{

eiα(t, 0) + e−iα(t, 0)

2

}

=
1

2

(
1

z − iα
+

1

z + iα

)

=
z

z2 + α2
,

L{sinhα(t, 0)}(z) = L
{

eα(t, 0)− e−α(t, 0)

2

}
(z)

=
1

2

(
1

z − α
− 1

z + α

)

=
α

z2 − α2
,

L{sinα(t, 0)}(z) = L
{

eiα(t, 0)− e−iα(t, 0)

2i

}
(z)

=
1

2i

(
1

z − iα
− 1

z + iα

)

=
α

z2 + α2
,

where all integrals converge in Reµ∗(z) > Reµ∗(|α|).

Example 2.5. We conclude our examples here with the transform of the unit step

function or, as it is sometimes called, the Heaviside function. It is defined for a >

0 ∈ T by

ua(t) =





0, if t ∈ T ∩ (−∞, a),

1, if t ∈ T ∩ [a,∞).
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The unit step function is obviously of exponential type II with constant c for all

c > 0. Thus, the transform is

∫ ∞

0

ua(t)eªz(σ(t), 0)∆t =

∫ ∞

a

eªz(σ(t), 0)∆t =
eªz(a, 0)

z
,

which holds for all z in the ROC which is given by Reµ∗(z) > 0.

We conclude this section by summarizing the transforms in tabular form given

in Table 2.1. There are a couple of things to notice here. First, at this point we

are still lacking uniqueness of the transform so that right now we are not justified in

reading the table as an association between the function and its transform. All we

can do at this point is read the table as saying that for the given functions, applying

the transform to those functions gives the results stated in the table. Second, notice

that the table works for the given functions independent of the time scale involved.

That is, we have one table for the cases R and Z rather than the two we get by

using the usual Laplace and Z-transforms. We need no other table for any other

time scale, and this is an idea we will revisit and try to understand in functional

terms when we discuss the inversion formula. We give the explicit representations

of the functions on R and Z as they are easily computed in these cases. Note that

in doing so, we are demonstrating that these functions are not the same functions

on all time scales.

2.2.1 Properties of the Transform

As we look towards an inverse for the transform, we would like to know which

functions are the transform of some function. To answer this question, the following

properties are needed. The reader familiar with the cases T = R and T = Z will

note striking similarities of the corresponding result in each of these cases, both of

which are special cases of this more general result.
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Table 2.1. Laplace transforms of functions on T and their ROC.

xT(t) xR(t) xZ(t) L{x}(z) ROC

1 1 1 1
z

Reµ∗(z) > 0

t t t 1
z2 Reµ∗(z) > 0

hk(t, 0), k ≥ 0 tk

k!

(
t
k

)
1

zk+1 Reµ∗(z) > 0

eα(t, 0) eαt (1 + α)t 1
z−α

Reµ∗(z) > Reµ∗(|α|)

coshα(t, 0) cosh(αt) (1+α)t+(1−α)t

2
z

z2−α2 Reµ∗(z) > Reµ∗(|α|)

sinhα(t, 0) sinh(αt) (1+α)t−(1−α)t

2
α

z2−α2 Reµ∗(z) > Reµ∗(|α|)

cosα(t, 0) cos(αt) (1+iα)t+(1−iα)t

2
z

z2+α2 Reµ∗(z) > Reµ∗(|α|)

sinα(t, 0) sin(αt) (1+iα)t−(1−iα)t

2i
α

z2+α2 Reµ∗(z) > Reµ∗(|α|)

ua(t), a ∈ T ua(t) ua(t)
eªz(a,0)

z
Reµ∗(z) > 0

(unit step)
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Theorem 2.4. Let F denote the generalized Laplace transform for f : T→ R.

(1) F (z) is analytic in Reµ(z) > Reµ(c).

(2) F (z) is bounded in Reµ(z) > Reµ(c).

(3) lim
|z|→∞

F (z) = 0.

Proof. For the first, we see

d

dz
L{f}(z) =

d

dz

∫ ∞

0

eσ
ªz(t, 0)f(t) ∆t

=

∫ ∞

0

d

dz


 1

1 + µ(t)z
exp




∫ t

0

log
(

1
1+µ(τ)z

)

µ(τ)
∆τ





 f(t) ∆t

=

∫ ∞

0

(∫ t

0

−1

1 + µ(τ)z
∆τ − µ(t)

1 + µ(t)z

)
eσ
ªz(t, 0)f(t) ∆t

= −
∫ ∞

0

(∫ σ(t)

0

1

1 + µ(τ)z
∆τ

)
eσ
ªz(t, 0)f(t)∆t

= −L{gf}(z),

where g(t) =
∫ σ(t)

0
1

1+µ(τ)z
∆τ . The second equation follows from the Lebesgue Dom-

inated Convergence Theorem. Note that on R, this calculation shows that we get

the familiar formula that derivatives of the transform correspond to multiplication

by powers of t in the function. On Z, the calculations show that (in the shifted

version) derivatives of the transform correspond to multiplication by powers of t+1

in the function.

The second claim is an immediate consequence of the preceding theorem since

it shows |F (z)| < M
α

.

As for the third, a direct calculation yields

lim
|z|→∞

F (z) = lim
|z|→∞

∫ ∞

0

eσ
ªz(t, 0)f(t) ∆t =

∫ ∞

0

lim
|z|→∞

eσ
ªz(t, 0)f(t) ∆t = 0,

which follows again from the Lebesgue Dominated Convergence Theorem.
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Theorem 2.5 (Initial and Final Values). Let f : T → R have generalized Laplace

transform F (z). Then f(0) = lim
z→∞

zF (z) and lim
t→∞

f(t) = lim
z→0

zF (z) when the limits

exist.

Proof.

L{f∆(t)} =

∫ ∞

0

f∆(t)eσ
ªz(t, 0) ∆t

= f(t)eªz(t, 0)
∣∣∣
∞

t=0
−

∫ ∞

0

f(t)(ªz)(t)eªz(t, 0) ∆t

= zF (z)− f(0).

Now z →∞ above yields lim
z→∞

∫ ∞

0

f∆(t)eσ
ªz(t, 0) ∆t = 0 = lim

z→∞
[zF (z)− f(0)] , i.e.,

f(0) = lim
z→∞

zF (z).

On the other hand, z → 0 yields

lim
z→0

∫ ∞

0

f∆(t)eσ
ªz(t, 0) ∆t =

∫ ∞

0

f∆(t) ∆t = lim
t→∞

f(t)− f(0) = lim
z→0

[zF (z)− f(0)] ,

i.e., lim
t→∞

f(t) = lim
z→0

zF (z).

2.2.2 Inversion Formula

Using Theorem 2.4 we can establish an inversion formula for the transform.

As is the case with T = R, these properties are not sufficient to guarantee that F (z)

is the transform of some continuous function f(t), but they are necessary as we have

just seen. For sufficiency, we have the following:

Theorem 2.6 (Inversion of the Transform). Let FT(z) be a complex valued function

of a complex variable that satisfies the following.

(1) FT(z) is analytic in the region Reµ(z) > Reµ(c).

(2) FT(z) → 0 uniformly as |z| → ∞ in the region Reµ(z) > Reµ(c).

(3) FT(z) has finitely many regressive poles of finite order {z1, z2, . . . zn}.
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Further, let FR(z) be the transform of the function fR(t) that corresponds to the

transform FT(z) of fT(t). If
∫ c+i∞

c−i∞ |FR(z)|dz < ∞, then

fT(t) =
n∑

k=1

Resz=zk
ez(t, 0)FT(z),

has transform FT(z) for all z with Re(z) > c.

Proof. The proof follows from the commutative diagram between the appropriate

function spaces in Figure 2.3.

Cp-eo(R,R)
LR -

¾
L−1
R

C

Cprd-e2(T,R)

θ

?

θ−1

6

LT -
¾
L−1
T = θ ◦ L−1

R ◦ γ−1

D

γ

?

γ−1

6

Figure 2.3. Commutative diagram between the function spaces.

Define the sets

C := {FR(z) : FR(z) = G(z)e−zτ},

D := {FT(z) : FT(z) = G(z)eªz(τ, 0)},

for G a rational function in z and for τ an appropriate constant. Let Cp-eo(R,R) de-

note the space of piecewise continuous functions of exponential order, and Cprd-e2(T,R)

denote the space of piecewise right dense continuous functions of exponential type

II.

We now examine the maps between these spaces shown in Figure 2.3. Each

of θ, γ, θ−1, γ−1 maps functions involving the continuous exponential to the time

scale exponential and vice versa. For example, γ maps the function FR(z) = e−za

z

to the function FT(z) = eªz(a,0)
z

, while γ−1 maps FT(z) back to FR(z) in the obvious
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manner. If the representation of FT(z) is independent of the exponential (that is,

τ = 0), then γ and its inverse will act as the identity. For example,

γ

(
1

z2 + 1

)
= γ−1

(
1

z2 + 1

)
=

1

z2 + 1
.

θ sends the continuous exponential function to the time scale exponential function

in the following manner: if we write fR(t) ∈ Cp-eo(R,R) as

fR(t) =
n∑

k=1

Resz=zk
eztFR(z),

then

θ(fR(t)) =
n∑

k=1

Resz=zk
ez(t, 0)FT(z).

To go from FR(z) to FT(z), we simply switch expressions involving the continuous

exponential in FR(z) with the time scale exponential giving FT(z) as was done for γ

and its inverse. θ−1 will then act on the collection of all g ∈ Cprd-e2(T,R) such that

g can be written in the form

g(t) =
n∑

k=1

Resz=zk
ez(t, 0)GT(z),

as

θ−1(g(t)) =
n∑

k=1

Resz=zk
eztGR(z).

For example, for the unit step function fR(t) = ua(t), we know from the continuous

result that we may write the step function as

fR(t) = ua(t) = Resz=0 ezt · e−az

z
,

so that if a ∈ T, then

θ(ua(t)) = Resz=0 ez(t, 0)
eªz(a, 0)

z
.

With these operators defined on these spaces, the claim in the theorem follows.
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For a given time scale Laplace transform FT(z), we begin by mapping to FR(z)

via γ−1. The hypotheses on FT(z) and FR(z) are enough to guarantee the inverse of

FR(z) exists for all z with Re(z) > c (see [5]), and is given by

fR(t) =
n∑

k=1

Resz=zk
eztFR(z).

Apply θ to fR(t) to retrieve the time scale function

fT(t) =
n∑

k=1

Resz=zk
ez(t, 0)FT(z),

whereby (γ ◦ LR ◦ θ−1)(fT(t)) = FT(z) as claimed.

Before looking at a few examples, some remarks are in order. First, it is

reasonable to ask if there is a contour in the complex plane around which it is

possible to integrate to obtain the same results that we have obtained here through

a more operational approach. At present, we leave this as a very interesting although

nontrivial open problem. It is well known that there are such contours when T = R

or T = Z. In fact, it can easily be shown that if T is completely discrete, then if we

choose any circle in the region of convergence which encloses all of the singularities

of F (z), we will obtain the inversion formula. However, in general, we do not know

whether or not there exists a contour which gives the formula, and if so, what it

actually is.

Second, it is possible to use the technique we have presented here to define

and find inverses for any time scale transform. These would include the Fourier,

Mellin, and many other transforms. Once the inverse is known for T = R and the

appropriate time scale integral is developed to give the correct transform analogues

for any T, the diagram becomes completed and the inversion formula for any T is

readily obtained.

Finally, notice in our construction, for any transformable function fT(t), there

is a shadow function fR(t). That is, to determine the appropriate time scale analogue
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of the function fR(t) in terms of the transform, we use the diagram to map its Laplace

transform on R to its Laplace transform on T.

Before looking at the examples, it is worth noting that even with the inversion

formula, we are still not justified in viewing Table 2.1 as association between func-

tions and their transforms as we still have not established uniqueness of the inverse.

However, we will do this in the next section.

Example 2.6. Let F (z) = 1
z−α

. F (z) is obviously analytic in Reµ(z) > Reµ(|α|), and

it certainly tends to zero uniformly in this region. As the function 1
z−α

is independent

of the exponential function, we see that the function FR that corresponds to F = FT

is simply FR = F . The integral

∫ |α|+i∞

|α|−i∞

1

z − α
dz

converges absolutely in Re(z) > |α|, and so we have an inverse of F for z ∈ Re(z) >

|α| and all regressive α in C given by

f(t) = Resz=α
ez(t, 0)

z − α
= eα(t, 0).

Example 2.7 (New Representation for hk(t, 0)). Suppose F (z) = 1
z2 . For this F , we

have that F is analytic in Reµ(z) > 0 and again tends to zero uniformly in this

region. The correspondence in this case is given by FR = F , and since the integral

∫ i∞

−i∞

1

z2
dz,

converges absolutely, F has an inverse for all z with Re(z) > 0 given by

L−1{F} = f(t) = Resz=0
ez(t, 0)

z2
= ez(t, 0)

∫ t

0

1

1 + µ(τ)z
∆τ

∣∣∣∣∣
z=0

= t.

Likewise, for F (z) = 1
z3 , we have that F satisfies all of the conditions in the same

region as above, with the complex integral involved converging absolutely. Thus, F
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again has an inverse for all z with Re(z) > 0 given by

L−1{F} = f(t) = Resz=0
ez(t, 0)

z3

=

ez(t, 0)

((∫ t

0
1

1+µ(τ)z
∆τ

)2

− ∫ t

0
µ(τ)

1+µ(τ)z
∆τ

)

2

∣∣∣∣∣
z=0

=
t2 − ∫ t

0
µ(τ)∆τ

2
= h2(t, 0).

The last equality is justified since the function

f(t) =
t2 − ∫ t

0
µ(τ)∆τ

2
,

is the unique solution to the initial value problem f∆(t) = h1(t, 0), f(0) = 0. In

a similar manner, we can use an induction argument coupled with Theorem 2.6 to

show that the inverse of F (z) = 1
zk+1 , for k a positive integer, is hk(t, 0).

Example 2.8. Now suppose F is one of the following: z
z2−α2 ,

α
z2−α2 ,

z
z2+α2 ,

α
z2+α2 . Each

of these functions is analytic in the region Reµ(z) > Reµ(|α|) and approach zero as

|z| → ∞ in this region. FR = F in each of these cases, and in each case the integral

∫ |α|+i∞

|α|−i∞
FR(z)dz,

converges absolutely, so that each F has an inverse. If we use the linearity of the

inverse operator and Example 2.6, then each inverse is given by

f1(t) = L−1{ z

z2 − α2
}

=
1

2

(
L−1

{
1

z − α

}
+ L−1

{
1

z + α

})

=
1

2
(eα(t, 0) + e−α(t, 0))

= coshα(t, 0),



47

f2(t) = L−1{ α

z2 − α2
}

=
1

2

(
L−1

{
1

z − α

}
− L−1

{
1

z + α

})

=
1

2
(eα(t, 0)− e−α(t, 0))

= sinhα(t, 0),

f3(t) = L−1{ z

z2 + α2
}

=
1

2

(
L−1

{
1

z − iα

}
+ L−1

{
1

z + iα

})

=
1

2
(eiα(t, 0) + e−iα(t, 0))

= cosα(t, 0),

f4(t) = L−1{ α

z2 + α2
}

=
1

2i

(
L−1

{
1

z − iα

}
− L−1

{
1

z + iα

})

=
1

2i
(eiα(t, 0)− e−iα(t, 0))

= sinα(t, 0),

for all regressive α ∈ R and z ∈ C with Re(z) > |α|.

Thus, the preceding examples show that in terms of the transform, the elemen-

tary functions defined in Chapter 1 all become the appropriate time scale analogues

or shadows of their continuous counterparts.

Example 2.9. Suppose we would like to determine the appropriate shadow of the

function

fR(t) =
1

2a
t sin at, a > 0.

At first glance, a reasonable guess for its time scale analogue might be the function

fT(t) =
1

2a
h1(t, 0) sina(t, 0).
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However, closer inspection shows that this guess is in fact incorrect. To see this,

note that the Laplace transform of fR(t) is

FR(z) =
z

(z2 + a2)2
.

To find the the proper analogue fT(t) of fR(t), we search for a time scale function

with the same transform as fR(t). To do this, note that

fT(t) = L−1
T {F}

= L−1
T

{
z

(z2 + a2)2

}

=
2∑

k=1

Resz=zk

zez(t, 0)

(z2 + a2)2

=
1

2a
sina(t, 0)

∫ t

0

1

1 + (µ(τ)a)2
∆τ − 1

2
cosa(t, 0)

∫ t

0

µ(τ)

1 + (µ(τ)a)2
∆τ,

so that in general the correct analogue involves the cosine function as well.

Example 2.10. A useful Laplace transform property is the ability to compute the

matrix exponential eA(t, 0) when A is a constant matrix. This is a property that we

will heavily exploit in the next chapter when discussing control. As in the discrete

and continuous cases, eA(t, 0) solves the initial value problem Y ∆ = AY , Y (0) = I.

Transforming yields zL{Y } − Y (0) = AL{Y }, so that L{Y } = (zI − A)−1, or

equivalently Y = eA(t, 0) = L−1{(zI − A)−1}.

For example, let A =




2 1

0 3


. Then

(zI − A)−1 =




1
(z−2)

1
(z−2)(z−3)

0 1
(z−3)


 ,

so that

eA(t, 0) =




e2(t, 0) e3(t, 0)− e2(t, 0)

0 e3(t, 0)


 .
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Example 2.11. Consider the function F (z) = eªz(σ(a), 0). This function has no

regressive poles, and hence Theorem 2.6 cannot be applied. If a is right scattered,

the Hilger Delta function which has representation

δHa (t) =





1
µ(a)

, t = a,

0, t 6= a,

has F (z) as a transform, while if a is right dense, the Dirac delta functional has

F (z) as a transform as we shall see later.

2.2.3 Uniqueness of the Inverse

If two functions f and g have the same (unilateral) transform, then are f and

g necessarily the same function? We have already seen that on R, the answer to

this question is affirmative if we define the equality in an almost everywhere (a.e.)

sense, whereas on Z the answer is affirmative. Of course, the biggest difference

between these two sets is that one only contains right-dense points, while the other

only contains right-scattered points. Thus, this might lead one to conjecture that in

the time scale case, it is necessary to consider points that are scattered and dense

separately. This is in fact the case as we show. Thus, the answer to our question on

uniqueness in the time scales case is affirmative when f = g a.e. for our definition

of a.e. on a time scale. Of course, in order to do so, we must first clarify what is

meant by a.e. on a time scale.

Recall from Chapter 1 that in his initial work on the time scale Lebesgue

integral, Guseinov [26] defines the Carathéodory extension of the set function that

assigns each time scale interval its length to be the Lebesgue ∆-measure on T. To

construct an outer measure, Guseinov does a Vitali covering of subsets of T by finite

or countable systems of intervals of T, and then naturally defines the outer measure

to be the infimum of the sums of the lengths of the intervals that cover the subsets.

If there is no such covering, he defines the outer measure of the set to be infinite.
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Thus, any time scale will have infinite ∆-measure. However, Guseinov points

out that his choosing the ∆-measure to be infinite is merely to preserve the mono-

tonicity of the outer measure. The monotonicity will also be preserved if for a subset

E of T that cannot be covered, we define the outer measure of E to be the outer

measure of the maximal coverable subset of E, call it F , plus some positive extended

real number c chosen independently of E. For his purposes, Guseinov chooses c = ∞,

but for our purposes, it is convenient to choose c = 0.

By doing this, the Lebesgue ∆-measure µ∆ can be decomposed nicely. For any

subset E of T, decompose E as E = D ∪ S, where

D = {t ∈ T : t is right dense}, S = {t ∈ T : t is right scattered}.

Since c = 0 above, we may write

µ∆(E) = m(E ∩D) + c(E ∩ S),

where m(D) denotes the usual Lebesgue measure of the set D and c(S) is the measure

given by c(S) =
∑

s∈S µ(s).

Notice that with this decomposition, the sets of measure zero can only consist

of right dense points since µ∆(E) = 0 if and only if m(E ∩D) = 0 and E ∩ S = ∅.
Thus, to show that a property holds almost everywhere on a time scale, it is necessary

to show that the property holds for every right scattered point in the time scale, and

that the set of right dense points for which the property fails has Lebesgue measure

zero.

We are now in a position to prove the uniqueness theorem.

Theorem 2.7 (Uniqueness of the Inverse). If the functions f : T→ R and g : T→ R

have the same Laplace transform, then f = g a.e. on T.

Proof. Suppose ∫ ∞

0

eσ
ªz(t, 0)f(t) ∆t =

∫ ∞

0

eσ
ªz(t, 0)g(t) ∆t,
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so that the function h = f − g has transform of zero. That is, if we let F denote the

inversion operator given in Theorem 2.6 and G denote the transform operator, then

h ∈ ker G. But, it follows that (F ◦G)(h) = F (0) = 0 = h, where we note that the

function h(t) = 0 a.e. also satisfies the equations above. Thus, f = g a.e. on T.

With uniqueness up to sets of measure zero now established, notice that we are

now justified in using Table 2.1 to associate a given function with its transform, as

long as we agree that any other function that differs from those given in the table on

a set of measure zero will also have the same transform. Indeed, this agrees with the

cases T = R and T = Z with which we are well familiar and have already discussed.

2.2.4 Frequency Shifting

For f ∈ Cprd-e2(T,R) with exponential type II constant c > 0, define the

function fµ(a, t) by

fµ(a, t) :=
∑

Resz=zk
e z

1+µa
(t, 0)F (z),

where F (z) is the transform of f(t).

Theorem 2.8 (Frequency Shifting). For f ∈ Cprd-e2(T,R) with exponential type II

constant c > 0,

L{ea(t, 0)fµ(a, t)}(z) = F (z − a),

where F (z) denotes the transform of f(t).

Proof. First, note that if F (z) has poles z0, z1, . . . , zn−1, then F (z − a) has poles

z0 + a, z1 + a, . . . , zn−1 + a. Thus,

L−1{F (z − a)} =
∑

Resz=zk+a ez(t, 0)F (z − a)

=
∑

Resz=zk
ez+a(t, 0)F (z)

=
∑

Resz=zk
e z

1+µa
⊕a(t, 0)F (z)

= ea(t, 0)fµ(a, t),
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an expression which equivalently says that

L{ea(t, 0)fµ(a, t)}(z) = F (z − a).

We now consider a few examples of uses of Theorem 2.8. First, note that if

T = R, then µ ≡ 0 and f0(a, t) = f(t), and so on R, the frequency shifting theorem

says

L{ea(t, 0)fµ(a, t)} = L{eatf(t)} = F (z − a),

as expected.

Next, notice for the exponential function, the theorem yields

L{eα+β(t, 0)} = L{eα(t, 0)e β
1+µα

(t, 0)} =
1

z − (α + β)
,

which was expected from Table 2.1.

Next, we examine the time scale trigonometric functions. We know

L{sinβ(t, 0)} =
β

z2 + β2
, L{cosβ(t, 0)} =

z

z2 + β2
,

so that each of these complex functions has simple poles at z = {βi,−βi}. Thus,

for f(t) = cosβ(t, 0), fµ(α, t) = cos β
1+µα

(t, 0), and for f(t) = sinβ(t, 0), fµ(α, t) =

sin β
1+µα

(t, 0). Applying Theorem 2.8,

L{eα(t, 0) sin β
1+µα

(t, 0)} =
β

(z − α)2 + β2
,

L{eα(t, 0) cos β
1+µα

(t, 0)} =
z − α

(z − α)2 + β2
.

Bohner and Peterson show this in [8, 10] by using uniqueness of solutions to certain

IVPs.

Likewise, for the time scale hyperbolic trig functions,

L{sinhβ(t, 0)} =
β

z2 − β2
, L{coshβ(t, 0)} =

z

z2 − β2
,
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so that each of these complex functions has simple poles at z = {β,−β}. Thus, for

f(t) = coshβ(t, 0), fµ(α, t) = cosh β
1+µα

(t, 0), and for f(t) = sinhβ(t, 0), fµ(α, t) =

sinh β
1+µα

(t, 0). Applying Theorem 2.8,

L{eα(t, 0) sinh β
1+µα

(t, 0)} =
β

(z − α)2 − β2
,

L{eα(t, 0) cosh β
1+µα

(t, 0)} =
z − α

(z − α)2 − β2
.

Bohner and Peterson also showed this in [8, 10] by using uniqueness of solutions to

certain IVPs.

The preceding examples are special because the poles are simple in each of

these cases, a fact which probably led Bohner and Peterson to their results. However,

they never talk about the analogue of shifting in the frequency domain for the

function f(t) = tk/k! on R. The reason for this is that the poles for the transform

of this function, and thus the time scale polynomials hk(t, 0) as well, are not simple

anymore. Indeed, the poles are of order k+1 for k ≥ 0 ∈ N0. For example, on T = R,

the function f(t) = teαt has transform F (z − α) = 1
(z−α)2

, and so it is quite natural

to wonder what plays the role of this function in general for arbitrary T. Using

Theorem 2.8, we note F (z) = 1
z2 has a pole of order 2 at z = 0, and since the residue

calculations in this case involve the derivative of the integral
∫ t

0

log(1+µ(τ)( z
(1+µ(τ)α))

µ(τ)
∆τ

with respect to z, we see fµ(α, t) =
∫ t

0
1

1+µ(τ)α
∆τ . Thus, another application of

Theorem 2.8 yields

L
{

ea(t, 0)

∫ t

0

1

1 + µ(τ)α
∆τ

}
=

1

(z − a)2
.

2.3 Convolution

We wish to know what function in the time domain is associated with the

product F (z)G(z) in the z domain. We know that on R and Z, these functions

are the convolution products. Thus, in this section, we turn our attention to the

convolution on an arbitrary time scale T via the Laplace transform.
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We begin by noting that on R and Z, the convolution is defined by

(f ∗ g)(t) =

∫ t

0

f(t− s)g(s)∆s.

However, on these two time scales, the difference t− s ∈ T whenever s, t ∈ T. This

need not be true on a general T, so that we cannot define the generalized convolution

within this framework. Instead, we need to define an analogue of the delay or shift

of a function on T. Motivated by this, we have the following:

Definition 2.3. The delay or shift of the function x(t) with x ∈ Cprd-e2(T,R) by

σ(τ) ∈ T, denoted by x(t, σ(τ)), is given by

uσ(τ)(t)x(t, σ(τ)) =
n∑

k=1

Resz=zk
X(z)ez(t, σ(τ)).

Here, recall that uξ(t) : T→ R is the time scale unit step function activated at time

t = ξ ∈ T.

Notice that uσ(τ)(t)x(t, σ(τ)) has transform X(z)eσ
ªz(τ, 0). Indeed,

uσ(τ)(t)x(t, σ(τ)) =
n∑

k=1

Resz=zk
X(z)ez(t, σ(τ))

=
n∑

k=1

Resz=zk

[
X(z)eσ

ªz(τ, 0)
]
ez(t, 0)

= L−1{X(z)eσ
ªz(τ, 0)}.

This allows us to use the term delay or shift to describe x(t, σ(τ)), since on T = R,

the transformed function X(z)e−zτ corresponds to the function uτ (t)x(t− τ). This

definition also allows us to give an analogue of the time shifting theorem in general.

Theorem 2.9 (Time Shifting). For g(t) ∈ Cprd-e2(T,R),

L{uσ(s)(t)g(t, σ(s))} =

∫ ∞

0

eσ
ªz(t, 0)uσ(s)(t)g(t, σ(s))∆t = G(z)eσ

ªz(s, 0),

with the integral converging in the ROC of g.
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With the delay operator now defined, we define the convolution of any two

arbitrary transformable time scale functions.

Definition 2.4. The convolution of the functions f(t) and g(t), denoted f ∗ g, with

f, g ∈ Cprd-e2(T,R) is given by

(f ∗ g)(t) =

∫ t

0

f(τ)g(t, σ(τ))∆τ.

Before stating the and proving the Convolution Theorem, it is worth noting

that on R and Z, the shift g(t, σ(s)) of the function g(t) is given by g(t− s). Thus,

this tells us that the convolution product reduces to the familiar one that is known

for each of T = R and T = Z.

Theorem 2.10 (Convolution Theorem). The transform of a convolution product that

is absolutely integrable is the product of the transforms, with the Laplace integral

converging in the region Reµ∗(z) > Reµ∗(ĉ), where ĉ = max{cf , cg} and cf and cg

are the exponential constants corresponding to f and g, respectively.

Proof. If we assume absolute integrability of all functions involved, then by the delay

property of the transform previously mentioned, we obtain

L{f ∗ g} =

∫ ∞

0

eσ
ªz(t, 0) [(f ∗ g)(t)] ∆t

=

∫ ∞

0

[∫ t

0

f(τ)g(t, σ(τ))∆τ

]
eσ
ªz(t, 0) ∆t

=

∫ ∞

0

f(τ)

[∫ ∞

σ(τ)

g(t, σ(τ))eσ
ªz(t, 0) ∆t

]
∆τ

=

∫ ∞

0

f(τ)L{uσ(τ)(t)g(t, σ(τ))}∆τ

=

∫ ∞

0

f(τ)
[
G(z)eσ

ªz(τ, 0)
]
∆τ

=

∫ ∞

0

f(τ)eσ
ªz(τ, 0)∆τG(z)

= F (z)G(z).
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For the convergence of the integral, note that for f and g of exponential type II with

constants cf and cg, respectively, we have

|(f ∗ g)(t)| =

∣∣∣∣
∫ t

0

f(τ)g(t, σ(τ))∆τ

∣∣∣∣

≤
∫ t

0

|f(τ)| · |g(t, σ(τ))|∆τ

≤ Mecg(t, 0)

∫ t

0

ecf
(τ, 0)ecg(0, σ(τ))∆τ

≤ Mecg(t, 0)

∫ t

0

ecf
(τ, 0)eªcg(τ, 0)∆τ

≤ M

|cf − cg|ecg(t, 0)
(
ecfªcg(t, 0)− 1)

)

≤ M

|cf − cg|
(
ecf

(t, 0) + ecg(t, 0)
)

≤ 2M

|cf − cg|eĉ(t, 0),

so that f ∗ g is of exponential type II with constant ĉ.

Example 2.12. Suppose f(t) = f(t, 0) is one of the elementary functions: that is,

f(t) is one of hk(t, 0), ea(t, 0), sina(t, 0), cosa(t, 0), cosha(t, 0), or sinha(t, 0). Di-

rect residue calculations show that the delay f(t, σ(τ)) of each of these functions

is given by hk(t, σ(τ)), ea(t, σ(τ)), sina(t, σ(τ)), cosa(t, σ(τ)), cosha(t, σ(τ)), and

sinha(t, σ(τ)). We wish to build a table of convolution products of these functions

since their products commonly arise in the solutions of dynamic equations. We will

demonstrate the computations involved for one of the products; the rest are similar.

Consider the product eα(t, 0)∗eβ(t, 0). By definitions of the convolution prod-

uct and the delay, we have

eα(t, 0) ∗ eβ(t, 0) =

∫ t

0

eα(τ, 0)eβ(t, σ(τ))∆τ

= eβ(t, 0)

∫ t

0

eα(τ, 0)eβ(0, σ(τ))∆τ

= eβ(t, 0)

∫ t

0

1

1 + µβ
eαªβ(τ, 0)∆τ



57

=
eβ(t, 0)

β − α
[1− eαªβ(t, 0)]

=
1

β − α
[eβ(t, 0)− eα(t, 0)] .

The remaining products can be found in Table 2.2.

Example 2.13. Consider g(t, σ(τ)) = 1. In this instance, we see that for any f ∈
Cprd-e2(T,R), the transform of h(t) =

∫ t

0
f(τ)∆τ is given by

L{h} = L{f ∗ 1} = F (z)L{1} =
F (z)

z
,

with the integral converging in the ROC of f . Recall that this is a result which we

obtained by (a notably more lengthy) direct calculation earlier.

Example 2.14. Let

f(t) =
1

2α
sinα(t, 0)

∫ t

0

1

1 + (µ(τ)α)2
∆τ − 1

2
cosα(t, 0)

∫ t

0

µ(τ)

1 + (µ(τ)α)2
∆τ,

for α > 0, and g(t) = eβ(t, 0). We wish to compute (f ∗ g)(t). By the Convolu-

tion Theorem, we know that the convolution product has transform F (z)G(z). By

Example 2.9,

F (z) =
z

(z2 + α2)2
.

Thus, we have

(f ∗ g)(t) = L−1{F (z)G(z)}

=
3∑

k=1

Resz=zk

zez(t, 0)

(z2 + α2)2(z − β)

=
1

2α2(α2 + β2)(α4 + β2)

(∫ t

0

(−βµ + 1)(α2)(α4 + β2)

1 + (µα)2
∆τ + (α− 1)β3 + 2α3β

)
cosα(t, 0)

+
1

2α(α2 + β2)(α4 + β2)

(∫ t

0

β(α4 + β2) + α2(α4 + β2)µ

1 + (µα)2
∆τ + α4 + (−α2 + α + 1)β2

)

× sinα(t, 0) +
β

(α2 + β2)2
eβ(t, 0).
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Table 2.2. Convolutions of some of the elementary functions on T.

f(t) g(t) (f ∗ g)(t)

eα(t, 0)

eβ(t, 0), α 6= β 1
β−α

[eβ(t, 0)− eα(t, 0)]

eα(t, 0) eα(t, 0)
∫ t

0
1

1+αµ(s)
∆s

hk(t, 0), α 6= 0 1
αk+1 eα(t, 0)−∑k

j=0
1

αk+1−j hj(t, 0)

sinβ(t, 0), α2 + β2 > 0 βeα(t,0)
α2+β2 − α sinβ(t,0)

α2+β2 − β cosβ(t,0)

α2+β2

cosβ(t, 0) αeα(t,0)
α2+β2 +

β sinβ(t,0)

α2+β2 − α cosβ(t,0)

α2+β2

sinα(t, 0)

sinβ(t, 0), α 6= 0, α 6= β α
α2−β2 sinβ(t, 0)− β

α2−β2 sinα(t, 0)

cosβ(t, 0), α 6= 0, α 6= β α
α2−β2 cosβ(t, 0)− α

α2−β2 cosα(t, 0)

sinα(t, 0), α 6= 0 1
α

sinα(t, 0)− 1
2
t cosα(t, 0)

hk(t, 0), k even (−1)(k+1)(k+2)/2 1
αk+1 cosα(t, 0)

+
∑k/2

j=0(−1)j hk−2j(t,0)

α2j+1

hk(t, 0), k odd (−1)(k+1)(k+2)/2 1
αk+1 sinα(t, 0)

+
∑(k−1)/2

j=0 (−1)j hk−2j(t,0)

α2j+1

cosα(t, 0)

cosβ(t, 0), α 6= 0, α 6= β − β
α2−β2 sinβ(t, 0) + α

α2−β2 sinα(t, 0)

cosα(t, 0) 1
α

sinα(t, 0) + 1
2
t cosα(t, 0)

hk(t, 0), k even (−1)(k+1)(k+2)/2 1
αk+1 sinα(t, 0)

+
∑(k−2)/2

j=0 (−1)j hk−2j−1(t,0)

α2j+1

hk(t, 0), k odd (−1)(k+1)(k+2)/2 1
αk+1 cosα(t, 0)

+
∑(k−1)/2

j=0 (−1)j hk−2j−1(t,0)

α2j+1

hk(t, 0) hj(t, 0) hk+j+1(t, 0)
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It is worth noting that the convolution product is both commutative and as-

sociative. Indeed, the products f ∗ g and g ∗ f have the same transform as do the

products f ∗ (g ∗ h) and (f ∗ g) ∗ h, and since the inverse is unique, the functions

defined by these products must agree almost everywhere.

At first glance, one may think that the identity is vested in the Hilger delta.

Unfortunately, this is not the case. It can be shown that any identity for the con-

volution will of necessity have transform 1 by the Convolution Theorem. But the

Hilger delta does not have transform 1 since its transform is just the exponential.

Thus, we develop an analogue of the Dirac delta in the next section in order to

establish an identity element.

2.4 The Dirac Delta Functional

Let f, g : T → R be given functions with f(x) having unit area. To define

the delta functional, we construct the following functional. Let C∞
c (T) denote the

C∞(T) functions with compact support. For gσ ∈ C∞
c (T) and for all ε > 0, define

the functional F : C∞
c (T,R)× T→ R by

F (gσ, a) :=





∫∞
0

δHa (x)gρ(σ(x)) ∆x, if a is right scattered,

limε→0

∫∞
0

1
ε
f(x

ε
)g(σ(x)) ∆x, if a is right dense.

The time scale Dirac delta functional is then given by the symmetric form

〈δTa , gσ〉 := F (gσ, a).

To demonstrate how this functional acts on functions from C∞
c (T), let g : T → R

be such that gσ ∈ C∞
c (T). If a is right dense, consider

f(x) =





1
ε
, if a ≤ x ≤ a + ε,

0, else,

with the understanding that any sequence of ε’s we choose will be under the restric-

tion that a + ε ∈ T for each ε in the sequence. Then for h(x) = gσ(x), we have (for
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any antiderivative H(x) of h(x)),

F (gσ, a) = lim
ε→0

∫ ∞

0

f(x)h(x) ∆x

= lim
ε→0

∫ a+ε

a
h(x) ∆x

ε

= lim
ε→0

H(a + ε)−H(a)

ε

= H∆(a) = h(a) = g(σ(a)) = g(a),

in the sense of weak limits. If a is right scattered, then

F (gσ, a) =

∫ ∞

0

δHa (x)gρ(σ(x)) ∆x = gρ(σ(a)) = g(a).

Thus, in functional terms, the time scale Dirac delta functional acts as

〈gσ, δTa 〉 = g(a),

independently of the time scale involved. Also, if g(t) = eªz(t, 0), then 〈δTa , gσ〉 =

eªz(a, 0), so that for a = 0, the Dirac delta functional δT0 (t) has Laplace transform of

1, thereby producing an identity element for the convolution. However, the present

definition of the delay operator only holds for functions. It is necessary to extend

this definition for the Dirac delta functional. To maintain consistency with the delta

function’s action on g(t) = eσ
ªz(t, 0), it follows that for any t ∈ T, the shift of δTa (τ)

is given by

δTa (t, σ(τ)) := δTt (σ(τ)).

With this definition, our claim holds:

(δT0 ∗ g)(t0) =

∫ t0

0

δT0 (τ)g(t, σ(τ)) ∆τ

= g(t0, 0)

= g(t0)

=

∫ t0

0

g(τ)δTt0(σ(τ)) ∆τ

=

∫ t0

0

g(τ)δT0 (t0, σ(τ)) ∆τ

= (g ∗ δT0 )(t0).
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(C∞
c (R,R))∗

LR -
¾

L−1
R

Tf (R)

(C∞
c (T,R))∗

I

?

I

6

LT -
¾
L−1
T = I ◦ L−1

R ◦ γ−1

Tf (T)

γ

?

γ−1

6

Figure 2.4. Commutative diagram in the dual spaces.

In other words, when we perform the convolution 〈g, δT0 (σ(t))〉, we must give

meaning to this symbol and do so by defining δT0 (σ(t)) to be the Kronecker delta when

t is right scattered and the usual Dirac delta if t is right dense. While this ad hoc

approach does not address convolution with an arbitrary (shifted) distribution on the

right, this will suffice (at least for now) since our eye is on solving generalizations of

canonical partial dynamic equations which will involve the Dirac delta distribution.

We now turn to uniqueness of the inverse transform of the Dirac delta. We

would like an analogue of the diagram given in the proof of Theorem 2.6 where we

move from the space of continuous functions to its dual space (or at least restricted

to the dual space of those functions that are infinitely differentiable with compact

support). As frequently happens when we move from a space to its dual space, the

diagram also becomes the dual of the original one. Indeed, the diagram in terms of

the dual space is shown in Figure 2.4.

The mappings γ and γ−1 in the dual diagram act on the transform spaces just

as in Figure 2.3. It is worth comparing Figures 2.3 and 2.4 since X ⊂ X∗. So how do

we reconcile the two diagrams? We first must clarify what is meant by the identity

map between the two dual spaces. The Dirac delta is defined in terms of its action

on any function: in both dual spaces, 〈δTa , gσ〉 = g(a). To make this agree with the

map for the function spaces, note that for f ∈ Cprd-e2(T,R) and g ∈ Cp-eo(R,R),
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the action of f(t) on hσ(t) = eσ
ªz(t, 0) should be the same as the action of g(t) on

h̃(t) = e−zt. For example, the function on T that acts on hσ(t) with a result of

1
z2+1

is the function f(t) = sin1(t, 0), while the function on R that acts on h̃(t) with

the same result is g(t) = sin(t). As another example, the function on T that acts

on hσ(t) with a result of h(τ)
z

is the time scale unit step function, while on R, the

function that results in h̃(τ)
z

is the continuous step function. Thus, in terms of the

dual spaces, the map on the left hand side of the diagram is the identity map, while

in the function spaces this identity map maps g into fσ by the switching of the

exponentials between the two domains.

The preceding discussion provides the basis for the uniqueness of the transform

of the delta functional. Through the diagram we see that if another functional had

the same transform, then there would be two such functionals over C∞
c (R,R) which

had the same transform, which we know to be false.

Next, we examine more properties of the Dirac delta. We have already noted

that the functional has transform 1 (as desired) since 〈δT0 , eσ
ªz(t, 0)〉 = 1. Second,

the transform of the derivative of the delta functional is familiar:

L{δT0
∆} =

∫ ∞

0

δT0
∆
eσ
ªz(t, 0) ∆t

= δT0 eªz(t, 0)
∣∣∣
∞

t=0
−

∫ ∞

0

ªzeªz(t, 0)δT0 ∆t

= z

∫ ∞

0

eσ
ªz(t, 0)δT0 ∆t

= zL{δT0 }

= z,

so that L{δT0 ∆} is the same as it on R.
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Finally, just as on R, the derivative of the Heaviside function is still the Dirac

delta:

〈H∆, gσ〉 =

∫ ∞

0

H∆(t)gσ(t) ∆t

= H(t)g(t)
∣∣∣
∞

t=0
−

∫ ∞

0

H(t)g∆(t) ∆t

= −
∫ ∞

0

g∆(t) ∆t

= g(0)

= 〈δT0 , gσ〉.

2.5 Applications to Green’s Function Analysis

We now demonstrate a powerful use of the Dirac delta applied to the Green’s

function analysis ubiquitous in the study of boundary value problems.

Consider the operator L : S → Crd(T,R) given by

Lx(t) := (px∆)∆(t) + q(t)xσ(t),

where p, q ∈ Crd, p(t) 6= 0 for all t ∈ T, and

S := {x ∈ C1(T,R) : (p x∆)∆ ∈ Crd(T,R)}.

Bohner and Peterson [8] showed that if the homogeneous boundary value prob-

lem

Lx = 0, αx(a)− βx∆(a) = γx(σ2(b)) + δx∆(σ(b)) = 0,

has only the trivial solution, then the nonhomogeneous boundary value problem

Lx = h(σ(t)), αx(a)− βx∆(a) = A, γ(σ2(b)) + δx∆(σ(b)) = B, (2.4)

where hσ ∈ Crd, and A and B are given constants, has a unique solution. If φ is the

solution of

Lφ = 0, φ(a) = β, φ∆(a) = α,

and ψ is the solution of

Lψ = 0, ψ(σ2(b)) = δ, ψ∆(σ(b)) = −γ,
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then the solution of (2.4) can be written in the form

x(t) :=

∫ σ(b)

a

G(t, σ(s))h(σ(s)) ∆s,

where G(t, σ(s)) is the Green’s function for the boundary value problem and is given

by

G(t, σ(s)) =





1
c
φ(t)ψ(σ(s)), if t ≤ s,

1
c
ψ(t)φ(σ(s)), if t ≥ σ(s),

where c := p(t)W (φ, ψ)(t) is a constant. They further show that the Green’s function

is symmetric.

For any s ∈ [a, σ(b)], if h(σ(t)) = δTσ(t)(s), then

x(t) =

∫ σ(b)

a

δTσ(s)(s)G(t, σ(s)) ∆s = G(t, σ(s)),

and therefore,

L(G(t, σ(s)) = δTσ(t)(s).

In fact,

Lx =

∫ σ(b)

a

L(G(t, σ(s)))h(σ(s)) ∆s =

∫ σ(b)

a

δTσ(t)(s)h(σ(s)) ∆s = h(σ(t)).



CHAPTER THREE

Linear Systems Theory on Time Scales

3.1 Controllability

We now turn our attention to the fundamental notions of controllability,

observability, realizability, and stability commonly dealt with in control theory.

Our focus here is the time scale setting, but our definitions coincide with those

that appear in the literature for T = R and T = Z. Throughout this chapter,

A(t) ∈ Rn×n, B(t) ∈ Rn×m, C(t) ∈ Rp×n, and D(t) ∈ Rp×m. We will assume the sys-

tems in question are regressive, a restriction which in turn implies that the matrix

I + µ(t)A(t) is invertible. Hence, on Z, the transition matrix will always be invert-

ible, and so we are justified in talking about controllability rather than reachability

which is common (see [12], [19], and [40]) since the transition matrix in general need

not be invertible for T = Z.

We begin with the time varying case, and then proceed to treat the time

invariant case, in which we will get stronger results than from the latter. We remark

here that some of the statements that follow in this chapter can be found in [3], [4],

and [20], but we have found serious errors throughout these works which are not

present in this chapter.

3.1.1 Time Varying Case

When the term controllability is used to discuss dynamical systems, it means

that the solutions of the dynamic equations involved can be driven to some desired

final state in finite time. Thus, mathematically, this notion is defined as follows.

Definition 3.1. Let A(t) ∈ Rn×n, B(t) ∈ Rn×m, C(t) ∈ Rp×n, and D(t) ∈ Rp×m all be

rd-continuous matrix functions defined on T. Here, p,m ≤ n. The regressive linear

65
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state equation

x∆(t) = A(t)x(t) + B(t)u(t), x(t0) = x0, (3.1)

y(t) = C(t)x(t) + D(t)u(t),

is called controllable on [t0, tf ] if given any initial state x0 there exists a rd-continuous

input signal u(t) such that the corresponding solution of the system satisfies x(tf ) =

xf .

We begin by giving a necessary and sufficient condition for a regressive linear

dynamic system to be controllable. The result is an analogue of the corresponding

known results for R and Z, for which the theorem reduces to the classical results in

each case.

Theorem 3.1 (Controllability Gramian Condition). The regressive linear state equa-

tion

x∆(t) = A(t)x(t) + B(t)u(t), x(t0) = x0, (3.2)

y(t) = C(t)x(t) + D(t)u(t), (3.3)

is controllable on [t0, tf ] if and only if the n× n controllability Gramian matrix

GC(t0, tf ) =

∫ tf

t0

ΦA(t0, σ(t))B(t)BT (t)ΦT
A(t0, σ(t)) ∆t,

is invertible.

Proof. Suppose GC(t0, tf ) is invertible. Then, given x0 and xf , we can choose the

input signal u(t) as

u(t) = −BT (t)ΦT
A(t0, σ(t))G−1

C (t0, tf )(x0 − ΦA(t0, tf )xf ), t ∈ [t0, tf ),

and extend u(t) continuously for all other values of t. The corresponding solution of
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the system at t = tf can be written as

x(tf ) = ΦA(tf , t0)x0 +

∫ tf

t0

ΦA(tf , σ(t))B(t)u(t)∆t

= ΦA(tf , t0)x0

−
∫ tf

t0

ΦA(tf , σ(t))B(t)BT (t)ΦT
A(t0, σ(t))G−1

C (t0, tf )(x0 − ΦA(t0, tf )xf ) ∆t,

= ΦA(tf , t0)x0

− ΦA(tf , t0)

∫ tf

t0

ΦA(t0, σ(t))B(t)BT (t)ΦT
A(t0, σ(t)) ∆tG−1

C (t0, tf )(x0 − ΦA(t0, tf )xf )

= ΦA(tf , t0)x0 − (ΦA(tf , t0)x0 − xf )

= xf ,

so that the state equation is controllable on [t0, tf ].

For the converse, suppose that the state equation is controllable, but for the

sake of a contradiction, assume that the matrix GC(t0, tf ) is not invertible. If

GC(t0, tf ) is not invertible, then there exists a vector xa 6= 0 such that

0 = xT
aGC(t0, tf )xa =

∫ tf

t0

xT
a ΦA(t0, σ(t))B(t)BT (t)ΦT

A(t0, σ(t))xa ∆t. (3.4)

But the function in this expression is the nonnegative continuous function

||xT
a ΦA(t0, σ(t))B(t)||2, and so it follows that

xT
a ΦA(t0, σ(t))B(t) = 0, t ∈ [t0, tf ). (3.5)

However, the state equation is controllable on [t0, tf ], and so choosing x0 = xa +

ΦA(t0, tf )xf , there exists an input signal ua(t) such that

xf = ΦA(tf , t0)x0 +

∫ tf

t0

ΦA(tf , σ(t))B(t)ua(t) ∆t,

which is equivalent to the equation

xa = −
∫ tf

t0

ΦA(t0, σ(t))B(t)ua(t) ∆t.

Multiplying through by xT
a and using (3.4) and (3.5) yields xT

a xa = 0, a contradiction.

Thus, the matrix GC(t0, tf ) is invertible.
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The controllability Gramian is symmetric and positive semidefinite. Thus,

the preceding theorem states that (3.1) is controllable on [t0, tf ] if and only if the

Gramian is positive definite. A system that is not controllable on [t0, tf ] may be-

come so when either tf is increased or t0 is decreased. Likewise, a system that

is controllable on [t0, tf ] may become uncontrollable if t0 is increased and/or tf is

decreased.

Although the preceding theorem is strong in theory, in practice it has limita-

tions. Indeed, computing the Gramian requires explicit knowledge of the transition

matrix which is generally not known and can even be difficult to approximate in

some cases. Thus, an easier sufficient condition to check is given by the following

definition and theorem.

Definition 3.2. If T is a time scale such that µ is sufficiently differentiable with the

indicated derivatives and rd-continuity existing, define the sequence of n×m matrix

functions

K0(t) = B(t)

Kj+1(t) = (I + µ(σ(t))A(σ(t)))−1K∆
j (t)

− [
(I + µ(σ(t))A(σ(t)))−1(µ∆(t)A(σ(t))

+ µ(t)A∆(t))(I + µ(t)A(t))−1 + A(t)(I + µ(t)A(t))−1
]
Kj(t), j = 0, 1, 2, . . .

A straightforward induction proof will show that for all t, s, we have that

∂j

∆sj
[ΦA(σ(t), σ(s))B(s)] = ΦA(σ(t), σ(s))Kj(s), j = 0, 1, . . .

Indeed, note that the claim trivially holds for j = 0, and for j = n, our inductive

hypothesis gives

∂n

∆sn
[ΦA(σ(t), σ(s))B(s)] = ΦA(σ(t), σ(s))Kn(s).
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Hence,

∂n+1

∆sn+1
[ΦA(σ(t), σ(s))B(s)]

=
∂

∆s
[ΦA(σ(t), σ(s))Kn(s)]

= ΦA(σ(t), σ(s))[(I + µ(σ(s))A(σ(s)))−1K∆
n (s)

−[(I + µ(σ(s))A(σ(s)))−1(µ∆(s)A(σ(s)) + µ(s)A∆(s))(I + µ(s)A(s))−1

+A(s)(I + µ(s)A(s))−1]Kn(s)]

= ΦA(σ(t), σ(s))Kn+1(s).

Evaluation of these matrices at s = t yields a nice relationship between these

matrices and the matrices given in the definition above:

Kj(t) =
∂j

∆sj
[ΦA(σ(t), σ(s))B(s)]

∣∣∣∣∣
s=t

, j = 0, 1, 2, . . .

This relationship enables us to establish the following result.

Theorem 3.2 (Controllability Rank Theorem). Suppose q is a positive integer such

that, for t ∈ [t0, tf ], B(t) is q-times rd-continuously differentiable and both of µ(t)

and A(t) are (q − 1)-times rd-continuously differentiable. Then the regressive linear

system

x∆(t) = A(t)x(t) + B(t)u(t), x(t0) = x0, (3.6)

y(t) = C(t)x(t) + D(t)u(t),

is controllable on [t0, tf ] if for some tc ∈ [t0, tf ), we have

rank

[
K0(tc) K1(tc) . . . Kq(tc)

]
= n,

where

Kj(t) =
∂j

∆sj
[ΦA(σ(t), σ(s))B(s)]

∣∣∣∣∣
s=t

, j = 0, 1, . . . , q.
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Proof. Suppose there is some tc ∈ [t0, tf ) such that the rank condition holds. For

the sake of a contradiction, suppose that the state equation is not controllable on

[t0, tf ]. Then the controllability Gramian GC(t0, tf ) is not invertible and, as in the

proof of Theorem 3.1, there exists a nonzero n× 1 vector xa such that

xT
a ΦA(t0, σ(t))B(t) = 0, t ∈ [t0, tf ). (3.7)

If we choose the nonzero vector xb so that xb = ΦT
A(t0, σ(tc))xa, then (3.7) yields

xT
b ΦA(σ(tc), σ(t))B(t) = 0, t ∈ [t0, tf ).

In particular, at t = tc, we have xT
b K0(tc) = 0. Differentiating (3.7) with respect to

t,

xT
b ΦA(σ(tc), σ(t))K1(t) = 0, t ∈ [t0, tf ),

so that xT
b K1(tc) = 0. In general,

dj

∆tj
[
xT

b ΦT
A(σ(tc), σ(t))B(t)

]
∣∣∣∣∣
t=tc

= xT
b Kj(tc) = 0, j = 0, 1, . . . , q.

Thus,

xT
b

[
K0(tc) K1(tc) . . . Kq(tc)

]
= 0,

which contradicts the linear independence of the rows guaranteed by the rank con-

dition. Hence, the equation is controllable on [t0, tf ].

On R, the collection of matrices Kj(t) is such that each member is the jth

derivative of the matrix ΦA(σ(t), σ(s))B(s) = ΦA(t, s)B(s). This agrees with the

literature in the continuous case (see [39] for example). However, while still tractable,

in general the collection Kj(t) is nontrivial to compute. The mechanics are more

involved even on Z, which is still a very “tame” time scale. Thus, the complications

of the extension of the usual theory become self evident.

Furthermore, the preceding theorem shows that if the rank condition holds

for some q and some tc ∈ [t0, tf ), then the linear state equation is controllable on
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any interval [t0, tf ] containing tc. This strong conclusion partly explains why the

condition is only a sufficient one.

3.1.2 Time Invariant Case

We now turn our attention to establishing results concerning the controllability

of regressive linear time invariant systems. The Laplace transform presented in

Chapter 2 will provide us with results that are not available in the time varying

case. We begin with an analogue of Theorem 3.2 that gives a necessary and sufficient

condition for controllability. We first need the following lemma.

Lemma 3.1. Given A,B ∈ Rn×n, and u = ux0(tf , σ(s)) ∈ Rn×1 an arbitrary rd-

continuous function, then

span

{ ∫ tf

t0

eA(s, t0)Bux0(tf , σ(s))∆s

}
= span{B,AB, . . . , An−1B}. (3.8)

Proof. Let {γk(t, t0)}n−1
k=0 be the collection of functions that decompose the expo-

nential matrix as guaranteed by Theorem 1.27. This collection forms a linearly

independent set since it can be taken as the solution set of an n-th order system of

linear ODEs. Apply the Gram-Schmidt process to generate an orthonormal collec-

tion {γ̂k(t, t0)}n−1
k=0 . The two collections are related by

[
γ0(t, t0) γ1(t, t0) . . . γn−1(t, t0)

]
(3.9)

=

[
γ̂0(t, t0) γ̂1(t, t0) . . . ˆγn−1(t, t0)

]




p11 p12 . . . p1n

0 p22 . . . p2n

...
...

...
...

0 0 . . . pnn




, (3.10)

where the matrix on the right is the triangular matrix obtained from the QR fac-

torization of the vector consisting of the functions {γk(t, t0)}n−1
k=0 on the left.
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Using the QR factorization, we can write the matrix exponential as

eA(t, t0) =
n−1∑

k=0

γk(t, t0)A
k

=
n−1∑

k=0

[
γ̂0(t, t0) γ̂1(t,t0) . . . γ̂n−1(t, t0)

]
· pkA

k,

where pk is the k-th column vector of the triangular matrix R. It is worth recalling

here that the entries on the diagonal of this matrix are norms of nonzero vectors

and are thus nonzero and positive. That is, pii > 0 for all i.

Rewriting the integral from (3.8),

∫ tf

t0

eA(s, t0)Bux0(tf , σ(s))∆s

=

∫ tf

t0

n−1∑

k=0

γk(s, t0)A
kBux0(tf , σ(s))∆s

=
n−1∑

k=0

AkB

∫ tf

t0

γk(s, t0)ux0(tf , σ(s))∆s

=
n−1∑

k=0

AkB

∫ tf

t0

[
γ̂0(s, t0) γ̂1(s, t0) . . . ˆγn−1(s, t0)

]
· pkux0(tf , σ(s))∆s.

Let

yk =

∫ tf

t0

[
γ̂0(s, t0) γ̂1(s, t0) . . . ˆγn−1(s, t0)

]
·pkux0(tf , σ(s))∆s, k = 0, 1, . . . , n−1.

We will show that span{y0, y1, . . . , yn−1} = Rn. That is, there exists some u ∈
Crd(Rn×1) so that for any arbitrary but fixed collection of vectors {z0, z1, . . . , zn−1} ∈
Rn×1, the system

∫ tf

t0

p11γ̂0(s, t0)ux0(tf , σ(s))∆s := z0 =




z00

z01

...

z0(n−1)



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∫ tf

t0

(γ̂0(s, t0)p12 + γ̂1(s, t0)p22) ux0(tf , σ(s))∆s := z1 =




z10

z11

...

z1(n−1)




...

∫ tf

t0

(γ̂0(s, t0)p1n + . . . + ˆγn−1(s, t0)pnn) ux0(tf , σ(s))∆s := zn−1 =




z(n−1)0

z(n−1)1

...

z(n−1)(n−1)




has a solution.

To accomplish this, we use the fact that the collection γ̂k(s, t0) is orthonormal

and search for a solution of the form

ux0(tf , σ(s)) = (uj) =

(
n−1∑
i=0

βj
i γ̂i(s, t0)

)
.

Starting with u0, the equations become

∫ tf

t0

γ̂0p11

(
n−1∑
i=0

β0
i γ̂i

)
∆s = z00

∫ tf

t0

(γ̂0p12 + γ̂1p22)

(
n−1∑
i=0

β0
i γ̂i

)
∆s = z10

...
∫ tf

t0

(γ̂0p1n + γ̂1p2n + . . . + ˆγn−1pnn)

(
n−1∑
i=0

β0
i γ̂i

)
∆s = z(n−1)0.

Since the system γ̂k is orthonormal, we can simplify the equations above using

the fact that the integral of cross terms γ̂iγ̂j, i 6= j, is zero. After doing so, the system

becomes a lower triangular system that can be solved by forward substitution. (The

observation that pii 6= 0 is crucial here, since this is exactly what allows us to solve
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the system.) For example, the first equation becomes

∫ tf

t0

γ̂0p11

(
n−1∑
i=0

β0
i γ̂i

)
∆s =

∫ tf

t0

γ̂0
2β0

0p11∆s

= β0
0p11

= z01,

so that β0
0 = z00

p11
. Using this value for β0

0 in the second equation,

∫ tf

t0

(γ̂0p12 + γ̂1p22)

(
n−1∑
i=0

β0
i γ̂i

)
∆s =

∫ tf

t−0

(γ̂0p12 + γ̂1p22)
(
β0

0 γ̂0 + β0
1 γ̂1

)
∆s

=
p12

p11

z01 + β1
1p22

= z10,

so that β0
1 = 1

p22
z11 − p12

p11p22
z01. We can continue solving the system in like manner

by using forward substitutions to find β0
j for all j = 0, 1, . . . , n − 1, which will in

turn yield u0 =
∑n−1

i=0 β0
i γ̂i. Repeating this process for u1, u2, . . . , un−1, we find the

correct linear combinations of γ̂k to solve the system, and so the claim follows.

Theorem 3.3 (Kalman Controllability Rank Condition). The regressive linear time

invariant system

x∆(t) = Ax(t) + Bu(t), x(t0) = x0, (3.11)

y(t) = Cx(t) + Du(t),

is controllable on [t0, tf ] if and only if the n× nm controllability matrix

[
B AB . . . An−1B

]
,

satisfies

rank
[
B AB . . . An−1B

]
= n.

Proof. Suppose the system is controllable, but for the sake of a contradiction that the

rank condition fails. Then there exists an n× 1 vector xa such that xT
a AkB = 0, k =

0, . . . , n− 1. Now, there are two cases to consider: either xT
a xf = 0 or xT

a xf 6= 0.
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Suppose xT
a xf 6= 0. Then for any t, the solution at time t is given by

x(t) =

∫ t

t0

eA(t, σ(s))Bux0(s) ∆s + eA(t, t0)x0

= eA(t, 0) ∗Bu(t) + eA(t, 0)x0

= Bu(t) ∗ eA(t, 0) + eA(t, 0)x0

=

∫ t

t0

eA(s, t0)Bux0(t, σ(s)) ∆s + eA(t, t0)x0,

where we observe that the solution is a convolution and is commutative. Choose

initial state x0 = By, where y is arbitrary. Then, again by commutativity of the

convolution and Theorem 1.27, we see

xT
a x(t) = xT

a

∫ t

t0

eA(s, t0)Bux0(t, σ(s)) ∆s + xT
a eA(t, t0)x0

=

∫ t

t0

n−1∑

k=0

γk(s, t0)x
T
a AkBux0(t, σ(s)) ∆s +

n−1∑

k=0

γk(t, t0)x
T
a AkBy

= 0,

so that xT
a x(t) = 0 for all t, which is a contradiction since xT

a x(tf ) = xT
a xf 6= 0.

Now suppose xT
a xf = 0. This time, we choose initial state x0 = e−1

A (tf , t0)xa.

Similar to the equation above,

xT
a x(t) =

∫ t

t0

n−1∑

k=0

γk(s, t0)x
T
a AkBux0(t, σ(s)) ∆s + xT

a eA(t, t0)e
−1
A (tf , t0)xa

= xT
a eA(t, t0)e

−1
A (tf , t0)xa.

In particular, at t = tf , xT
a x(tf ) = ||xa||2 6= 0, another contradiction.

Thus in either case we arrive at a contradiction, and so controllability implies

the rank condition.

Conversely, suppose that the system is not controllable. Then there exists an

initial state x0 ∈ Rn×1 such that for all input signals u(t) ∈ Rm×1, we have that
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x(tf ) 6= xf . Again, it follows from the commutativity of the convolution that

xf 6= x(tf ) =

∫ tf

t0

eA(tf , σ(s))Bux0(s) ∆s + eA(tf , t0)x0

=

∫ tf

t0

eA(s, t0)Bux0(tf , σ(s)) ∆s + eA(tf , t0)x0

=

∫ tf

t0

n−1∑

k=0

γk(s, t0)A
kBux0(tf , σ(s)) ∆s + eA(tf , t0)x0.

In particular,

n−1∑

k=0

AkB

∫ tf

t0

γk(s, t0)ux0(tf , σ(s)) ∆s 6= xf − eA(tf , t0)x0.

Notice that the last equation holds if and only if there is no linear combination of

the matrices AkB for k = 0, 1, . . . , n− 1, which satisfy

n−1∑

k=0

AkBαk = xf − eA(tf , t0)x0.

The fact that there is no such linear combination follows from Lemma 3.1 once we

realize that an argument similar to the one given in the proof of this result holds if

m < n. Thus, the matrix
[
B AB . . . An−1B

]
,

cannot have rank n, and so we have shown that if the matrix has rank n, then it is

controllable by contraposition.

The preceding theorem is commonly called the Kalman rank condition after

R.E. Kalman who first proved it in 1960 (see [33] and [35]) for the cases T = R and

T = Z. Thus, in our analysis, we have again unified the two cases: however, once

again we have also extended the result to the arbitrary time scale with bounded

graininess. However, it is important to point out that the proof here is not the

one that Kalman gave, which is the one classically used for R and Z (see [39] for

example). In these two special cases, an observation about the particular form of

the matrix exponential on R and Z allows one to arrive at the result in a more

straightforward manner.
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Example 3.1. Consider the system

x∆(t) =



− 8

45
1
30

− 1
45

− 1
10


 x(t) +




2

1


 u(t), x(0) =




5

2


 ,

y(t) =

[
3 4

]
x(t).

It is straightforward to verify that

rank

[
B AB

]
= rank




2 −29
90

1 −13
90


 = 2,

so that the state equation is controllable by Theorem 3.3.

The next theorem establishes that there is a state variable change in the time

invariant case that demonstrates the “controllable part” of the state equation.

Theorem 3.4. Suppose the controllability matrix for the regressive linear time invari-

ant state equation

x∆(t) = Ax(t) + Bu(t), x(t0) = x0,

y(t) = Cx(t),

satisfies

rank

[
B AB . . . An−1B

]
= q,

where 0 < q < n. Then there exists an invertible matrix P such that

P−1AP =




Â11 Â12

0(n−q)×q Â22


 , P−1B =




B̂11

0(n−q)×m


 ,

where Â11 is q × q, B̂11 is q ×m, and

rank

[
B̂11 Â11B̂11 . . . Â11

q−1
B̂11

]
= q.
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Proof. We begin constructing P by choosing q linearly independent columns p1, p2, . . . , pq,

from the controllability matrix for the system. Then choose pq+1, . . . , pn as n × 1

vectors so that

P =

[
p1 . . . pq pq+1 . . . pn

]

is invertible. Define G so that PG = B. Writing the j-th column of B as a linear

combination of the linearly independent columns of P given by p1, p2, . . . , pq, we find

that the last n − q entries of the j-th column of G must be zero. This argument

holds for j = 1, . . . , m, and so G = P−1B does indeed have the desired form.

Now set F = P−1AP , yielding

PF =

[
Ap1 Ap2 . . . Apn

]
.

The column vectors Ap1, . . . , Apq can be written as linear combinations of p1, . . . , pn

since each column of AkB, k ≥ 0 can be written as a linear combination of these

vectors. As for G above, the first q columns of F must have zeros as the last n− q

entries. Thus, P−1AP has the desired form. Multiply the rank-q controllability

matrix by P−1 to obtain

P−1

[
B AB . . . An−1B

]
=

[
P−1B P−1AB . . . P−1An−1B

]

=

[
G FG . . . F n−1G

]

=




B̂11 Â11B̂11 . . . Â11
n−1

B̂11

0 0 . . . 0


 .

Applying the Cayley-Hamilton theorem gives

rank

[
B̂11 Â11B̂11 . . . Â11

q−1
B̂11

]
= q.

Theorem 3.5. The regressive linear time invariant state equation

x∆(t) = Ax(t) + Bu(t), x(t0) = x0,

y(t) = Cx(t),
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is controllable if and only if for every scalar λ the only complex n× 1 vector p that

satisfies pT A = λpT , pT B = 0 is p = 0.

Proof. For necessity, note that if there exists p 6= 0 and a complex λ such that the

equation given is satisfied, then it follows that

pT

[
B AB . . . An−1B

]
=

[
pT B pT AB . . . pT An−1B

]

=

[
pT B λpT B . . . λn−1pT B

]
,

so that the n rows rows of the controllability matrix are linearly dependent, and

hence the system is not controllable.

For sufficiency, suppose that the state equation is not controllable. Then by

Theorem 3.4, there exists an invertible P such that

P−1AP =




Â11 Â12

0(n−q)×q Â22


 , P−1B =




B̂11

0(n−q)×m


 ,

with 0 < q < n. Let pT =

[
01×q pT

q

]
P−1, where pq is a left eigenvector for Â22.

Thus, for some complex scalar λ, pT
q Â22 = λpT

q , pq 6= 0. Then p 6= 0, and

pT B =

[
0 pT

q

]



B̂11

0


 = 0

pT A =

[
0 pT

q

]



Â11 Â12

0 Â22


 P−1 =

[
0 λpT

q

]
P−1 = λpT .

Thus, the claim follows.

We can paraphrase the preceding result as saying that in a controllable time

invariant system, A can have no left eigenvectors that are orthogonal to the columns

of B. This fact can then be used to prove the next theorem.
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Theorem 3.6. The regressive linear state equation

x∆(t) = Ax(t) + Bu(t), x(t0) = x0,

y(t) = Cx(t),

is controllable if and only if

rank

[
zI − A B

]
= n

for every complex scalar z.

Proof. By Theorem 3.5, the state equation is not controllable if and only if there

exists a nonzero complex n× 1 vector p and complex scalar λ such that

pT

[
λI − A B

]
, p 6= 0.

But this condition is equivalent to saying that

rank

[
λI − A B

]
< n,

so the claim follows.

3.2 Observability

The next notion from linear systems theory that we explore is observability.

As before, we will treat the time varying case first followed by the time invariant

case.

3.2.1 Time Varying Case

In linear systems theory, when the term observability is used, it refers to the

effect that the state vector has on the output of the state equation. As such, the

concept is unchanged by considering simply the response of the system to zero input.

Motivated by this, we define the following.
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Definition 3.3. The regressive linear state equation

x∆(t) = A(t)x(t), x(t0) = x0,

y(t) = C(t)x(t),

is called observable on [t0, tf ] if any initial state x(t0) = x0 is uniquely determined

by the corresponding response y(t) for t ∈ [t0, tf ).

The notions of controllability and observability can be thought of as dual to

one another. Thus, any theorem that we obtain for controllability should have an

analogue in terms of observability. Thus, we begin by formulating observability in

terms of the Gramian.

Theorem 3.7 (Observability Gramian Condition). The regressive linear system

x∆(t) = A(t)x(t), x(t0) = x0,

y(t) = C(t)x(t),

is observable on [t0, tf ] if and only if the n× n observability Gramian matrix

GO(t0, tf ) =

∫ tf

t0

ΦT
A(t, t0)C

T (t)C(t)ΦA(t, t0) ∆t

is invertible.

Proof. If we multiply the solution expression

y(t) = C(t)ΦA(t, t0)x0,

on both sides by ΦT
A(t, t0)C(t) and integrate, we obtain

∫ tf

t0

ΦT
A(t, t0)C

T (t)y(t)∆t = GO(t0, tf )x0.

The left side of this equation is determined by y(t) for t ∈ [t0, tf ), and thus this

equation is a linear algebraic equation in x0. If GO(t0, tf ) is invertible, then x0 is

uniquely determined.
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Conversely, if GO(t0, tf ) is not invertible, then there exists a nonzero vector xa

such that GO(t0, tf )xa = 0. But then xT
aGO(t0, tf )xa = 0, so that

C(t)ΦA(t, t0)xa = 0, t ∈ [t0, tf ).

Thus, x(t0) = x0 + xa yields the same zero-input response for the system as x(t0) =

x0, and so the system is not observable on [t0, tf ].

The observability Gramian, like the controllability Gramian, is symmetric pos-

itive semidefinite. It is positive definite if and only if the state equation is observable.

Once again we see that the Gramian condition is not very practical as it re-

quires explicit knowledge of the transition matrix. Thus, we present a sufficient

condition that is easier to check for observability. As before, observability and con-

trollability can be considered dual notions to one another, and as such, proofs of

corresponding results are often similar if not the same. Thus, any result for which

we do not give the proof in observability has a proof that mirrors the proof of the

result for controllability.

Definition 3.4. If T is a time scale such that µ is sufficiently differentiable with the

indicated derivatives and rd-continuity existing, define the sequence of p× n matrix

functions

L0(t) = C(t),

Lj+1(t) = Lj(t)A(t) + L∆
j (t)(I + µ(t)A(t)), j = 0, 1, 2, . . . .

As in the case of controllability, an induction argument shows that

Lj(t) =
∂j

∆tj
[C(t)ΦA(t, s)]

∣∣∣∣∣
s=t

.

With this, an argument similar to the one before shows the following:

Theorem 3.8 (Observability Rank Condition). Suppose q is a positive integer such

that, for t ∈ [t0, tf ], C(t) is q-times rd-continuously differentiable and both of µ(t)
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and A(t) are (q − 1)-times rd-continuously differentiable. Then the regressive linear

system

x∆(t) = A(t)x(t), x(t0) = x0, (3.12)

y(t) = C(t)x(t),

is observable on [t0, tf ] if for some tc ∈ [t0, tf ), we have

rank




L0(tc)

L1(tc)

...

Lq(tc)




= n,

where

Lj(t) =
∂j

∆sj
[C(t)ΦA(t, s)]

∣∣∣∣∣
s=t

, j = 0, 1, . . . , q.

3.2.2 Time Invariant Case

Like controllability, observability has equivalent conditions that become neces-

sary and sufficient in the time invariant case. The first is the Kalman rank condition,

whose statement and proof follow.

Theorem 3.9 (Kalman Observability Rank Condition). The autonomous linear re-

gressive system

x∆(t) = Ax(t), x(t0) = x0,

y(t) = Cx(t),

is observable on [t0, tf ] if and only if the nm× n observability matrix




C

CA

...

CAn−1



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satisfies

rank




C

CA

...

CAn−1




= n.

Proof. Again, we show that the rank condition fails if and only if the observability

Gramian is not invertible. Thus, suppose that the rank condition fails. Then there

exists a nonzero n× 1 vector xa such that

CAkxa = 0, k = 0, . . . , n− 1.

This implies, using Theorem 1.27, that

GO(t0, tf )xa =

∫ tf

t0

eT
A(t, t0)C

T CeA(t, t0)xa ∆t

=

∫ tf

t0

eT
A(t, t0)C

T

n−1∑

k=0

γk(t, t0)CAkxa ∆t

= 0,

so that the Gramian is not invertible.

Conversely, suppose that the Gramian is not invertible. Then there exists

nonzero xa such that

xT
aGO(t0, tf )xa = 0.

As argued before, this then implies

CeA(t, t0)xa = 0, t ∈ [t0, tf ).

At t = t0, we obtain Cxa = 0, and differentiating k times and evaluating the result

at t = t0 gives

CAkxa = 0, k = 0, . . . , n− 1.
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Thus, 


C

CA

...

CAn−1




xa = 0,

so that the rank condition fails.

The proof of the preceding result demonstrates an important point about con-

trollability and observability in the arbitrary time scale setting: namely, proofs of

similar results for the two notions are often similar, but can sometimes be very dif-

ferent. (Comparing the proof of the Kalman condition for controllability with the

one for observability shows this stark contrast.)

The following example makes use of Theorem 3.9.

Example 3.2. Consider the system

x∆(t) =



− 8

45
1
30

− 1
45

− 1
10


 x(t) +




2

1


 u(t), x(0) =




5

2


 ,

y(t) =

[
3 4

]
x(t).

From Example 3.1, recall that the system is controllable. We claim the system is

also observable. This follows from Theorem 3.9 since

rank




C

CA


 = rank




3 4

−28
45

− 3
10


 = 2.

The following three theorems concerning observability have proofs that mirror

their controllability counterparts, and so will not be given here.

Theorem 3.10. Suppose the observability matrix for the regressive linear time invari-

ant state equation

x∆(t) = Ax(t) + Bu(t), x(t0) = x0,

y(t) = Cx(t),
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satisfies

rank




C

CA

...

CAn−1




= `,

where 0 < ` < n. Then there exists an invertible n× n matrix Q such that

Q−1AQ =




Â11 0

Â21 Â22


 , CQ =

[
Ĉ11 0

]
,

where Â11 is `× `, Ĉ11 is p× `, and

rank




Ĉ11

Ĉ11Â11

...

Ĉ11
ˆAl−1
11




= `.

The state variable change Theorem 3.10 is constructed by choosing n−` vectors

in the nullspace of the observability matrix, and preceding them by ` vectors that

yield a set of n linearly independent vectors.

Theorem 3.11. The regressive time invariant linear state equation

x∆(t) = Ax(t) + Bu(t), x(t0) = x0,

y(t) = Cx(t),

is observable if and only if for every complex scalar λ, the only complex n× 1 vector

p that satisfies Ap = λp, Cp = 0 is p = 0.

Again, Theorem 3.11 can be restated as saying that in an observable time

invariant system, A can have no right eigenvectors that are orthogonal to the rows

of C.
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Theorem 3.12. The regressive time invariant linear state equation

x∆(t) = Ax(t) + Bu(t), x(t0) = x0,

y(t) = Cx(t),

is observable if and only if

rank




C

zI − A


 = n,

for every complex scalar z.

3.3 Realizability

The term realizability in linear systems theory refers to the ability to char-

acterize a known output in terms of a linear system with some input. A precise

definition of the concept follows.

Definition 3.5. The regressive linear state equation

x∆ = A(t)x(t) + B(t)u(t), x(t0) = 0,

y(t) = C(t)x(t),

of dimension n is called a realization of the weighting pattern G(t, σ(s)) if

G(t, σ(s)) = C(t)ΦA(t, σ(s))B(s),

for all t, s. If a realization of this system exists, then the weighting pattern is called

realizable. The system is called a minimal realization if no realization of G(t, σ(s))

with dimension less than n exists.

Notice that for the system

x∆(t) = A(t)x(t) + B(t)u(t), x(t0) = 0, (3.13)

y(t) = C(t)x(t) + D(t)u(t),
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the output signal y(t) corresponding to a given input u(t) and weighting pattern

G(t, σ(s)) = C(t)ΦA(t, σ(s))B(s) is given by

y(t) =

∫ t

t0

G(t, σ(s))u(s) ∆s + D(t)u(t), t ≥ t0.

When there exists a realization of a particular weighting response G(t, σ(s),

there will in fact exist many since a change of state variables will leave the weight-

ing pattern unchanged. Also, there can be many different realizations of the same

weighting pattern that all have different dimensions. This is why we are careful to

distinguish between realizations and minimal realizations in our definition.

We now give equivalent conditions for realizability: as before, we begin with

the time variant case and then proceed to the time invariant case.

3.3.1 Time Varying Case

The next theorem gives a characterization of realizable systems in general.

Theorem 3.13 (Factorization of G(t, σ(s))). The weighting pattern G(t, σ(s)) is re-

alizable if and only if there exist a rd-continuous matrix H(t) that is of dimension

q × n and a rd-continuous matrix F (t) of dimension n × r such that G(t, σ(s)) =

H(t)F (σ(s)) for all t, s.

Proof. Suppose there exist of the matrices H(t) and F (t) with G(t, σ(s)) = H(t)F (σ(s)).

Then the system

x∆(t) = F (t)u(t),

y(t) = H(t)x(t),

is a realization of G(t, σ(s)) since the transition matrix of the zero system is the

identity.
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Conversely, suppose that G(t, σ(s)) is realizable. We may assume that the

system

x∆(t) = A(t)x(t) + B(t)u(t),

y(t) = C(t)x(t),

is one such realization. Since the system is regressive, we may write

G(t, σ(s)) = C(t)ΦA(t, σ(s))B(s) = C(t)ΦA(t, 0)ΦA(0, σ(s))B(s),

and so by choosing H(t) = C(t)ΦA(t, 0) and F (t) = ΦA(0, σ(t))B(t), the claim

follows.

Although the preceding theorem gives a basic condition for realization of linear

systems, often in practice it is not very useful because writing the weighting pattern

in its factored form can be very difficult. Also, as the next example demonstrates,

the realization given by the factored form can often be undesirable in certain aspects.

Example 3.3. Suppose T is a time scale with 0 ≤ µ ≤ 2. Under this assumption,

−1
4
∈ R+(T). Then the weighting pattern

G(t, σ(s)) = e−1/4(t, σ(s)),

has the factorization

G(t, σ(s)) = e−1/4(t, σ(s)) = e−1/4(t, 0)eª(−1/4)(σ(s), 0).

By the previous theorem, a one-dimensional realization of G is

x∆(t) = eª(−1/4)(t, 0)u(t),

y(t) = e−1/4(t, 0)x(t).
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This state equation has an unbounded coefficient (note that eª(−1/4)(t, 0) = e1/(4−µ)(t, 0)

is unbounded since 1/(4− µ) > 0) and is not uniformly exponentially stable. How-

ever, the one-dimensional realization of G given by

x∆(t) = −1

4
x(t) + u(t),

y(t) = x(t),

does have bounded coefficients and is uniformly exponentially stable. Thus, this

realization is the more desirable of the two realizations because of this fact.

Before examining minimal realizations, some remarks are in order. First, note

that inverse and σ operators commute:

P−1(σ(t)) = P−1(t) + µ(t)(P−1(t))∆

= P−1(t) + µ(t)(−P (σ(t)))−1P∆(t)P−1(t)

= P−1(t)− (P (σ(t))−1(P (σ(t))− P (t))P−1(t)

= (P (σ(t)))−1.

Second, it is possible to do a variable change on the system

x∆(t) = A(t)x(t) + B(t)x(t),

y(t) = C(t)x(t),

so that the coefficient of x∆(t) in the new system is zero, while at the same time

preserving realizability of the system under the change of variables.

Indeed, set z(t) = P−1(t)x(t) and note that P (t) = ΦA(t, t0) satisfies

(P (σ(t)))−1A(t)P (t)− (P (σ(t)))−1P∆(t) = 0.

If we make this substitution, then the system becomes

z∆(t) = P−1(σ(t))B(t)u(t),

y(t) = C(t)P (t)z(t).



91

Thus, in terms of realizability, we may assume without loss of generality that A(t) ≡
0 by changing the system to the form given above. We shall make frequent use of

this fact when proving the results that follow.

It is important to know when a given realization is minimal. The following

theorem gives a necessary and sufficient condition for this in terms of controllability

and observability.

Theorem 3.14 (Characterization of Minimal Realizations). Suppose the regressive

linear state equation

x∆(t) = A(t)x(t) + B(t)x(t),

y(t) = C(t)x(t),

is a realization of the weighting pattern G(t, σ(s)). Then this realization is minimal

if and only if for some t0 and tf > t0 the state equation is both controllable and

observable on [t0, tf ].

Proof. As argued above, we may assume without loss of generality that A(t) ≡ 0.

Suppose the n−dimensional realization given is not minimal. Then there is a lower-

dimension realization of G(t, σ(s)) having form

z∆(t) = R(t)u(t), (3.14)

y(t) = S(t)z(t),

with the dimension of z(t) being nz < n. Writing the weighting pattern in terms of

both realizations produces C(t)B(s) = S(t)R(s) for all t, s. Thus,

CT (t)C(t)B(s)BT (s) = CT S(t)R(s)BT (s),

for all t, s. For any t0 and tf > t0, it is possible to integrate this expression with

respect to t and then with respect to s to obtain

G0(t0, tf )GC(t0, tf ) =

∫ tf

t0

CT (t)S(t) ∆t

∫ tf

t0

R(s)BT (s) ∆s.
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The right hand side of this equation is the product of an n × nz matrix and an

nz × n matrix, and as such, it cannot have full rank since the dimension of the

space spanned by the product is at most nz < n. Therefore, GO(t0, tf ) and GC(t0, tf )

cannot be simultaneously invertible. The argument is independent of the t0 and tf

chosen, and so sufficiency is established.

Conversely, suppose that the given state equation is a minimal realization of

the weighting pattern G(t, σ(s)), with A(t) ≡ 0. We begin by showing that if either

GC(t0, tf ) =

∫ tf

t0

B(t)BT (t) ∆t,

or

GO(t0, tf ) =

∫ tf

t0

CT (t)C(t) ∆t,

is singular for all t0 and tf , then minimality is violated. Thus, there exist intervals

[ta0, t
a
f ] and [tb0, t

b
f ] such that GC(ta0, t

a
f ) and GO(tb0, t

b
f ) are both invertible. If we let t0 =

min{ta0, tb0} and tf = max{taf , tbf}, then the positive definiteness of the observability

and controllability Gramians yield that both GC(t0, tf ) and GO(t0, tf ) are invertible.

To show this, we begin by supposing that for every interval [t0, tf ] the matrix

GC(t0, tf ) is not invertible. Then, given t0 and tf there exists an n × 1 vector

x = x(t0, tf ) such that

0 = xTGC(t0, tf )x =

∫ tf

t0

B(t)BT (t)x ∆t.

Thus, xT B(t) = 0 for t ∈ [t0, tf ).

We claim that there exists at least one such vector x that is independent of

t0 and tf . To this end, note that if T is unbounded from above and below, then for

each positive integer k there exists an n× 1 vector xk with

||xk|| = 1; xT
k B(t) = 0, t ∈ [−k, k].

Thus, {xk}∞k=1 is a bounded sequence of n×1 vectors and by the Bolzano-Wierstrauss

Theorem, it has a convergent subsequence since T is closed. We label this convergent
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subsequence by {xkj
}∞j=1 and denote its limit by x0 = lim

j→∞
xkj

. Note xT
0 B(t) = 0

for all t, since for any given time ta, there exists a positive integer Ja such that

ta ∈ [−kj, kj] for all j ≥ Ja, which in turn implies xT
kj

B(ta) = 0 for all j ≥ Ja.

Hence, xT
0 satisfies xT

0 B(ta) = 0.

Now let P−1 be a constant, invertible, n×n matrix with bottom row xT
0 . Using

P−1 as a change of state variables gives another minimal realization of the weighting

pattern, with coefficient matrices

P−1B(t) =




B̂1(t)

01×m


 , C(t)P =

[
Ĉ1(t) Ĉ2(t)

]
,

where B̂1(t) is (n−1)×m, and Ĉ1(t) is p×(n−1). Then a straightforward calculation

shows G(t, σ(s)) = Ĉ1(t)B̂1(σ(s)) so that the linear state equation

z∆(t) = B̂1(t)u(t),

y(t) = Ĉ1(t)z(t),

is a realization for G(t, σ(s)) of dimension n− 1. This contradicts the minimality of

the original n-dimensional realization. Thus, there must be at least one ta0 and one

taf > ta0 such that GC(ta0, t
a
f ) is invertible.

A similar argument shows that there exists at least one tb0 and one tbf > tb0 such

that GO(tb0, t
b
f ) is invertible. Taking t0 = min{ta0, tb0} and tf = max{taf , tbf} shows that

the minimal realization of the state equation is both controllable and observable on

[t0, tf ].

3.3.2 Time Invariant Case

We now restrict ourselves to the time invariant case and use a Laplace trans-

form approach to establish our results. Instead of considering the time-domain

description of the input-output behavior given by

y(t) =

∫ t

0

G(t, σ(s))u(s) ∆s,
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we examine the corresponding behavior in the z-domain. Laplace transforming the

equation above and using the convolution theorem yields Y (z) = G(z)U(z). The

question is: Given a transfer function G(z), when does there exist a time invariant

form of the state equation such that

C(zI − A)−1B = G(z),

and when is this realization minimal?

To answer this, we begin by characterizing time invariant realizations. In what

follows, a strictly-proper rational function of z is a rational function of z such that

the degree of the numerator is strictly less than the degree of the denominator.

Theorem 3.15. The p× q transfer function G(z) admits a time invariant realization

of the regressive system

x∆(t) = Ax(t) + Bu(t),

y(t) = Cx(t),

if and only if each entry of G(z) is a strictly-proper rational function of z.

Proof. If G(z) has a time invariant realization, then G has the form G(z) = C(zI −
A)−1B. We showed in Chapter 2 that for each Laplace transformable function f(t),

F (z) → 0 as z → ∞, which in turn implies that F (z) is a strictly-proper rational

function in z. Thus, the matrix (zI − A)−1 is a matrix of strictly-proper rational

functions, and G(z) is a matrix of strictly-proper rational functions since linear

combinations of such functions are themselves strictly-proper and rational.

Conversely, suppose that each entry Gij(z) in the matrix is strictly-proper and

rational. Without loss of generality, we can assume that each polynomial in the

denominator is monic (i.e. has leading coefficient of 1). Suppose

d(z) = zr + dr−1z
r−1 + . . . + d0,
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is the least common multiple of the polynomials in the denominators. Then d(z)G(z)

can be decomposed as a polynomial in z with p× q constant coefficient matrices, so

that

d(z)G(z) = Pr−1z
r−1 + . . . + P1z + P0.

We claim that the qr-dimensional matrices given by

A =




0q Iq . . . 0q

0q 0q . . . 0q

...
...

...
...

0q 0q . . . 0q

−d0Iq −d1Iq . . . −dr−1Iq




, B =




0q

0q

...

0q

Iq




, C =




P0

P1

...

Pr−1




,

form a realization of G(z). To see this, let

R(z) = (zI − A)−1B,

and partition the qr × q matrix R(z) into r blocks R1(z), R2(z), . . . , Rr(z), each of

size q×q. Multiplying R(z) by (zI−A) and writing the result in terms of submatrices

gives rise to the relations

Ri+1(z) = zRi, i = 1, . . . , r − 1, (3.15)

and

zRr(z) + d0R1(z) + d1R2(z) + . . . + dr−1Rr(z) = Iq. (3.16)

Using (3.15) to rewrite (3.16) in terms of R1(z) gives

R1(z) =
1

d(z)
Iq,

and thus from (3.15) again, we have

R(z) =
1

d(z)




Iq

zIq

...

zr−1Iq




.
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Multiplying by C yields

C(zI − A)−1B =
1

d(z)

(
P0 + zP1 + . . . + zr−1Pr−1

)
= G(z),

which is a realization of G(z). Thus, the claim follows.

The realizations that are minimal are characterized in the following theorem.

The result is repeated here for completeness sake in this easier case of Theorem 3.14.

Theorem 3.16. Suppose the time invariant regressive linear-state equation

x∆(t) = Ax(t) + Bx(t),

y(t) = Cx(t),

is a realization of the transfer function G(z). Then this state equation is a minimal

realization of G(z) if and only if it is both controllable and observable.

Proof. Suppose the state equation is a realization of G(z) that is not minimal. Then

there is a realization of G(z) given by

z∆(t) = Pz(t) + Qz(t),

y(t) = Rz(t),

with dimension nz < n. Thus,

CeA(t, 0)B = ReP (t, 0)Q, t ≥ 0.

Repeated differentiation with respect to t, followed by evaluation at t = 0 yields

CAkB = RF kQ, k = 0, 1, . . . .

Rewriting this information in matrix form for k = 0, 1, . . . , 2n− 2, we see



CB CAB . . . CAn−1B

...
...

...
...

CAn−1B CAnB . . . CA2n−2B




=




RQ RPQ . . . RP n−1Q

...
...

...
...

RP n−1Q RP nQ . . . RP 2n−2Q




,
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and can be rewritten as



C

CA

...

CAn−1




[
B AB . . . An−1B

]
=




R

RP

...

RP n−1




[
Q PQ . . . P n−1Q

]
.

However, since the right hand side of the equation is the product of an nzp×nz and

an nz×nzm matrix, the rank of the product can be no greater than nz. Thus, nz < n,

which implies that that the realization given in the statement of the theorem cannot

be both controllable and observable. Therefore, by contraposition a controllable and

observable realization must be minimal.

Conversely, suppose the state equation given in the statement of the theorem

is a minimal realization that is not controllable. Then there exists an n × 1 vector

y 6= 0 such that

yT
[
B AB . . . An−1B

]
= 0,

which implies yT AkB = 0 for all k ≥ 0 by the Cayley-Hamilton theorem. For P−1 an

invertible n×n matrix with bottom row yT , then a variable change of z(t) = P−1x(t)

produces the state equations

z∆(t) = Âz(t) + B̂u(t),

y(t) = Ĉz(t),

which is also an n-dimensional minimal realization of G(z). Partition the coefficient

matrices of the state equation above as

Â = P−1AP =




Â11 Â12

Â21 Â22


 , B̂ = P−1B =




B̂1

0


 , Ĉ = CP =

[
Ĉ1 CA

]
,

where Â11 is (n− 1)× (n− 1), B̂1 is (n− 1)× 1, and Ĉ1 is 1× (n− 1). From these
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partitions, it follows from the construction of P that ÂB̂ = P−1AB has the form

ÂB̂ =




Â11B̂1

Â21B̂1


 =




Â11B̂1

0


 .

Since the bottom row of P−1AkB is zero for all k ≥ 0,

ÂkB̂ =




Â11
k
B̂1

0


 , k ≥ 0.

But, Â11, B̂1, Ĉ1 give an (n− 1)-dimensional realization of G(z) since

ĈeÂ(t, 0)B̂ =

[
Ĉ1 Ĉ2

] ∞∑

k=0

ÂkB̂hk(t, 0)

=

[
Ĉ1 Ĉ2

] ∞∑

k=0




Â11
k
B̂1

0


 hk(t, 0)

= Ĉ1eÂ11
(t, 0)B̂1,

so that the state equation in the statement of the theorem is in fact not minimal, a

contradiction. A similar argument holds if the system is assumed not to be observ-

able.

We now illustrate Theorem 3.15 and Theorem 3.16 with an example.

Example 3.4. Consider the transfer function G(z) = 9(37+300z)
5+75z+270z2 . G(z) admits a

time invariant realization by Theorem 3.15 since G(z) is a strictly-proper rational

function of z. The form of G(z) indicates that we should look for a 2-dimensional

realization with a single input and single output. We can write

G(z) =

[
3 4

]

zI −



− 8

45
1
30

− 1
45

− 1
10







−1 


2

1


 ,
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so that a time invariant realization of G(z) is given by

x∆(t) =



− 8

45
1
30

− 1
45

− 1
10


 x(t) +




2

1


 u(t), x(0) = x0,

y(t) =

[
3 4

]
x(t).

We showed in Example 3.1 that this realization is in fact controllable, and we showed

in Example 3.2 that it is also observable. Thus, Theorem 3.16 guarantees that this

realization of G(z) is minimal.

3.4 Stability

We complete our foray into linear systems theory by considering stability.

Pötzsche, Siegmund, and Wirth deal with exponential stability in [38]. DaCunha

also deals with this concept under a different definition in [15, 16] and emphasizes the

time varying case. We begin by revisiting exponential stability in the time invariant

case and then proceed to another notion of stability commonly used in linear systems

theory.

3.4.1 Exponential Stability in the Time Invariant Case

We start this section by revisiting the notion of exponential stability. We are

interested in both the time invariant and time varying cases separately since it is

often possible to obtain stronger results in the time invariant case.

We have already noted that if A is constant, then ΦA(t, t0) = eA(t, t0). In what

follows, we will consider autonomous systems with t0 = 0 in order to talk about the

Laplace transform.

Recall from Chapter 1 that DaCunha in [16] defines uniform exponential sta-

bility as follows.

Definition 3.6 (DaCunha, [16]). The regressive time varying system

x∆ = A(t)x(t), x(t0) = x0,
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is called uniformly exponentially stable if there exist constants γ, λ > 0 with−λ ∈ R+

such that for any t0 and x(t0), the corresponding solution satisfies

||x(t)|| ≤ ||x(t0)||γe−λ(t, t0), t ≥ t0.

With this definition of exponential stability, we can prove the next theorem.

Theorem 3.17. The autonomous equation

x∆(t) = Ax(t), x(0) = x0,

is uniformly exponentially stable if and only if

∫ ∞

0

||eA(t, 0)|| ∆t ≤ β,

for some β > 0.

Proof. For necessity, note that if the system is uniformly exponentially stable, then

by Theorem 1.24, we have that

∫ ∞

0

||eA(t, 0)|| ∆t ≤
∫ ∞

0

γe−λ(t, 0) ∆t

=
γ

λ
,

so that the claim follows by choosing β = γ
λ
.

For sufficiency, assume the integral condition holds but for the sake of contra-

diction that the system is not exponentially stable. Then, again by Theorem 1.24,

we know that for all λ, γ > 0 with −λ ∈ R+, we have that

||eA(t, 0)|| > γe−λ(t, 0).

Computing the integral gives

∫ ∞

0

||eA(t, 0)|| ∆t >

∫ ∞

0

γe−λ(t, 0) ∆t

=
γ

−λ
e−λ(t, 0)

∣∣∣
∞

0

=
γ

λ
.
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In particular, if we choose γ > βλ, then

∫ ∞

0

||eA(t, 0)|| ∆t >
βλ

λ
= β,

a contradiction.

Now consider the system

x∆(t) = Ax(t), x(0) = I.

Transforming this system yields

X(z) = (zI − A)−1,

which is the transform of eA(t, 0). We know that this result is unique as we argued

in the previous chapter. Note that this matrix contains only strictly-proper rational

functions of z since we have the formula

(zI − A)−1 =
adj(zI − A)

det(zI − A)
.

Specifically, det(zI−A) is a degree-n polynomial in z, while each entry of adj(zI−A)

is a polynomial of degree at most n− 1. Suppose

det(zI − A) = (z − λ1)
ψ1(z − λ2)

ψ2 . . . (z − λm)ψm ,

where λ1, λ2, . . . , λn are the distinct eigenvalues of the n × n matrix A, with corre-

sponding multiplicities ψ1, ψ2, . . . , ψm. Decomposing (zI − A)−1 in terms of partial

fractions gives

(zI − A)−1 =
m∑

k=1

ψk∑
j=1

Wkj
1

(z − λk)j
,

where each Wkj is an n×n matrix of partial fraction expansion coefficients given by

Wkj =
1

(ψk − j)!

dψk−j

dzψk−j

[
(z − λk)

ψk(zI − A)−1
]
∣∣∣∣∣
z=λk

.
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If we now take the inverse Laplace transform of (zI −A)−1 in the form given above,

we obtain the representation

eA(t, 0) =
m∑

k=1

ψk∑
j=1

Wkj
fj−1(µ, λk)

(j − 1)!
eλk

(t, 0),

where fj(µ, λk) is the sequence of functions obtained from the residue calculations

of the jth derivative in the inversion formula. For example, the first few terms in

the sequence are

f0(µ, λk) = 1,

f1(µ, λk) =

∫ t

0

1

1 + µλk

∆τ,

f2(µ, λk) =

(∫ t

0

1

1 + µλk

∆τ

)2

−
∫ t

0

µ

(1 + µλk)2
∆τ,

f3(µ, λk) =

(∫ t

0

1

1 + µλk

∆τ

)3

− 3

∫ t

0

µ

(1 + µλk)2
∆τ

∫ t

0

1

1 + µλk

∆τ

+

∫ t

0

2µ2

(1 + µλk)3
∆τ,

...

Notice that if µ is bounded, then each fj(µ, λk) can be bounded by a “regular”

polynomial of degree j in t, call it aj(t). That is, fj can be bounded by functions

of the form aj(t) = ajx
j + aj−1x

j−1 · · · + a0. This observation will play a key role

in the next theorem. Pötzsche, Siegmund, and Wirth do prove this result in [38],

but our proof differs from theirs somewhat in that we use the transform to obtain

it, while they use other techniques. Note, however, that in the theorem we do use

their definition of exponential stability rather than the one given by DaCunha. For

completeness, we remind the reader by restating their definition here.

Definition 3.7 (Pötzsche, Siegmund, Wirth, [38]). For t, t0 ∈ T and x0 ∈ Rn, the

system

x∆(t) = A(t)x(t), x(t0) = x0,
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is said to be uniformly exponentially stable if there exists a constant α > 0 such that

for every t0 ∈ T there exists a K ≥ 1 with

||ΦA(t, t0)|| ≤ Ke−α(t−t0), for t ≥ t0,

with K being chosen independently of t0.

Recall that DaCunha’s definition of uniform exponential stability of a system

will imply that the system is uniformly exponential stable if we use Pötzsche, Sieg-

mund, and Wirth’s definition of the concept, but the converse need not be true in

general. Thus, DaCunha’s definition is weaker in this sense.

Theorem 3.18. The autonomous system

x∆(t) = Ax(t), x(0) = x0,

is exponentially stable if and only if all eigenvalues of A live in S(C), the stability

region of T, which has bounded graininess.

Proof. Suppose the eigenvalue condition holds. Then, appealing to Theorem 3.17

and writing the exponential in the explicit form given above in terms of the distinct

eigenvalues λ1, λ2, . . . , λm, we obtain

∫ ∞

0

||eA(t, 0)|| ∆t =

∫ ∞

0

||
m∑

k=1

ψk∑
j=1

Wkj
fj−1(µ, λk)

(j − 1)!
eλk

(t, 0)|| ∆t

≤
m∑

k=1

ψk∑
j=1

||Wkj||
∫ ∞

0

∣∣∣∣
fj−1(µ, λk)

(j − 1)!
eλk

(t, 0)

∣∣∣∣ ∆t

≤
m∑

k=1

ψk∑
j=1

||Wkj||
∫ ∞

0

|aj−1(t)eλk
(t, 0)| ∆t

≤
m∑

k=1

ψk∑
j=1

||Wkj||
∫ ∞

0

aj−1(t)e
−αt ∆t

≤
m∑

k=1

ψk∑
j=1

||Wkj||
∫ ∞

0

aj−1(t)e
−αt dt

< ∞.
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Notice that the last three lines hold by appealing to Definition 3.7. Thus, by Theo-

rem 3.17 the system is exponentially stable.

Now, for the sake of a contradiction, assume that the eigenvalue condition

fails. Let λ be an eigenvalue of A with associated eigenvector v, with λ /∈ S(C).

Direct calculation shows that the solution of the system

x∆ = Ax, x(0) = v,

is given by x(t) = eλ(t, 0)v. According to Pötzsche, Siegmund, and Wirth, if λ /∈
S(C), then

lim
t→∞

eλ(t, 0) 6= 0,

so that we arrive at a contradiction.

3.4.2 BIBO Stability in the Time Varying Case

Besides exponential stability, the concept of bounded-input, bounded-output

stability is also a useful property for a system to have. As its name suggests, the

notion is one that compares the supremum of the output signal with the supremum

of the input signal. Thus, we can define the term as follows.

Definition 3.8. The regressive time varying linear state equation

x∆(t) = A(t)x(t) + B(t)u(t), x(t0) = x0,

y(t) = C(t)x(t),

is said to be uniformly bounded-input, bounded-output stable if there exists a finite

constant η such that for any t0 and any input signal u(t) the corresponding zero-state

response satisfies

sup
t≥t0

||y(t)|| ≤ η sup
t≥t0

||u(t)||.

Note that we use the word ‘uniform’ to stress that the same η works for all

t0 and all input signals. We wish to know when a system is BIBO stable, and so a

characterization of BIBO stability follows.
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Theorem 3.19. The regressive time varying linear state equation

x∆(t) = A(t)x(t) + B(t)u(t), x(t0) = x0,

y(t) = C(t)x(t),

is uniformly bounded-input, bounded-output stable if and only if there exists a finite

constant ρ such that for all t, τ with t ≥ τ ,

∫ t

τ

||G(t, σ(s))|| ∆s ≤ ρ.

Proof. Assume such a ρ exists. Then for any t0 and any input signal, the corre-

sponding zero-state response of the state equation satisfies

||y(t)|| =
∣∣∣
∣∣∣
∫ t

t0

C(t)ΦA(t, σ(s))B(s)u(s) ∆s
∣∣∣
∣∣∣

≤
∫ t

t0

||G(t, σ(s))|| ||u(s)||∆s, t ≥ t0.

Replacing ||u(s)|| by its supremum over s ≥ t0, and using the integral condition, we

obtain

||y(t)|| ≤
∫ t

t0

||G(t, σ(s))||∆s sup
t≥t0

||u(t)||

≤ ρ sup
t≥t0

||u(t)||, t ≥ t0.

Thus, taking the supremum of the left hand side of the inequality over t ≥ t0, the

system is BIBO stable if we choose η = ρ.

Conversely, suppose the state equation is uniformly BIBO stable. Then there

exists a constant η so that, in particular, the zero-state response for any t0 and any

input signal such that sup
t≥t0

||u(t)|| ≤ 1 satisfies sup
t≥t0

||y(t)|| ≤ η. For the sake of a

contradiction, suppose no finite ρ exists that satisfies the integral condition. Then

for any given ρ > 0, there exist τρ and tρ > τρ such that

∫ tρ

τρ

||G(tρ, σ(s))||∆s > ρ.
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In particular, if ρ = η, this implies that there exist τη, with tη > τη, and indices i, j

such that the i, j-entry of the impulse response satisfies

∫ tη

τη

|Gij(tη, σ(s))|∆s > η.

With t0 = τη consider the m × 1 input signal u(t) defined for t ≥ t0 as follows: set

u(t) = 0 for t > tη, and for t ∈ [t0, tη] set every component of u(t) to zero except for

the j-th component given by the piecewise continuous signal

uj(t) =





1, Gij(tη, σ(t)) > 0,

0, Gij(tη, σ(t)) = 0 , t ∈ [t0, tη],

−1, Gij(tη, σ(t)) < 0.

This input signal satisfies ||u(t)|| ≤ 1 for all t ≥ t0, but because of the integral con-

dition above, the i-th component of the corresponding zero-state response satisfies

yi(tη) =

∫ tη

t0

Gij(tη, σ(s))uj(s)∆s

=

∫ tη

t0

|Gij(tη, σ(s))|∆s

> η.

Since ||y(tη)|| ≥ |yi(tη)|, we arrive at a contradiction that completes the proof.

We now wish to give conditions under which the notions of exponential stability

and BIBO stability are equivalent. To this end, we begin with the following.

Theorem 3.20. Suppose the regressive time varying linear state equation

x∆(t) = A(t)x(t) + B(t)u(t), x(t0) = x0,

y(t) = C(t)x(t),

is uniformly exponentially stable, and there exist constants β and γ such that

||B(t)|| ≤ β and ||C(t)|| ≤ α



107

for all t. Then the state equation is also uniformly bounded-input, bounded-output

stable.

Proof. Using the bound implied by uniform exponential stability, we have

∫ t

τ

||G(t, σ(s))||∆s ≤
∫ t

τ

||C(t)|| ||ΦA(t, σ(s))|| ||B(s)||∆s

≤ αβ

∫ t

τ

||ΦA(t, σ(s))||∆s

≤ αβ

∫ t

τ

γe−λ(t, σ(s))∆s

≤ αβγ

λ

∫ t

τ

λ

1− µ(s)λ
eλ/(1−µλ)(s, t)∆s

=
αβγ

λ
(1− e−λ(t, τ))

≤ αβγ

λ
.

By Theorem 3.19, the state equation is also bounded-input, bounded-output stable.

The following example illustrates the use of Theorem 3.20.

Example 3.5. Let T be a time scale with 0 ≤ µ < 1
2
. Consider the system

x∆(t) =



−2 1

−1 − sin(t)− 2


 x(t) +




cos(t)

sin(t)


 u(t), x(t0) = x0,

y(t) =

[
1 e−1(t, 0)

]
x(t),

where here, sin(t) and cos(t) are the usual trigonometric functions and not their

time scale counterparts. DaCunha, in [15], shows that the system is uniformly

exponentially stable by applying Theorem 1.21 with the choice Q(t) = I. For t ≥ 0,

we have ||B(t)|| =
√

cos2(t) + sin2(t) = 1 and ||C(t)|| =
√

1 + (e−1(t, 0))2 ≤ √
2

since p = −1 ∈ R+ from our assumption on T, and hence, by Theorem 3.20, the

state equation is also uniformly bounded-input, bounded-output stable.
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For the converse of the previous theorem, it is known on T = R and T = Z that

stronger hypotheses than simply having the system be BIBO stable are necessary to

establish exponential stability (see [1], [2], and [37]). At present, we lack an analogue

of this result for an arbitrary time scale in the time varying system case. We will

see that the time invariant case does allow for the equivalence of the two notions in

the general time scale case under certain conditions.

3.4.3 BIBO Stability in the Time Invariant Case

We need to extend the definition of BIBO stability to the time invariant case,

but for reasons that will soon become apparent, we will need to modify the definition

slightly.

Definition 3.9. For any shift u(t, σ(s)) of the transformable function u(t), the time

invariant system

x∆(t) = Ax(t) + Bu(t), x(t0) = x0,

y(t) = Cx(t),

is said to be uniformly bounded-input, bounded-output stable if there exists a finite

constant η such that the corresponding zero-state response satisfies

sup
t≥0

||y(t)|| ≤ η sup
t≥0

sup
s≥0

||u(t, σ(s))||.

Note that Definitions 3.8 and 3.9 are different: one deals with the time varying

case and the other with the time invariant case. The modified definition in the time

invariant case says that the output stays bounded over all shifts of the input.

Theorem 3.21. The regressive linear time invariant system

x∆(t) = Ax(t) + Bu(t), x(t0) = x0,

y(t) = Cx(t),
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is bounded-input, bounded-output stable if and only if there exists a finite β > 0 such

that ∫ ∞

0

||G(t)||∆t ≤ β.

Proof. Suppose we have the existence of the claimed β > 0. For any time t, we have

y(t) =

∫ t

0

CeA(t, σ(s))Bu(s)∆s

=

∫ t

0

CeA(s, 0)Bu(t, σ(s))∆s,

since y(t) is a convolution, so that

||y(t)|| ≤ ||C||
∫ t

0

||eA(s, 0)|| ||B|| sup
0≤s≤t

||u(t, σ(s))||∆s

≤ ||C||
∫ ∞

0

||eA(s, 0)||∆s ||B|| sup
s≥0

||u(t, σ(s))||.

Therefore,

sup
t≥0

||y(t)|| ≤ ||C||
∫ ∞

0

||eA(s, 0)||∆s ||B|| sup
t≥0

sup
s≥0

||u(t, σ(s))||.

If we choose η = ||C|| β ||B||, the claim follows.

Conversely, suppose that the system is bounded-input bounded-output stable,

but for the sake of a contradiction that the integral is unbounded. Then,

sup
t≥0

||y(t)|| ≤ η sup
t≥0

sup
s≥0

||u(t, σ(s))||,

and ∫ ∞

0

||G(t)||∆t > β, for all β > 0.

In particular, there exist indices i, j such that

∫ ∞

0

|Gij(t)|∆t > β.

Choose u(t, σ(s)) in the following manner: set uk(t, σ(s)) = 0 for all k 6= j, and
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define uj(t, σ(s)) by

uj(t, σ(s)) =





1, if Gij(s) > 0,

0, if Gij(s) = 0,

−1, if Gij(s) < 0,

and choose β > η > 0. Notice that sup
t≥0

sup
s≥0

||u(t, σ(s)|| ≤ 1, so that sup
t≥0

||y(t)|| ≤ η.

However,

sup
t≥0

||y(t)|| = sup
t≥0

||
∫ t

0

G(s)u(t, σ(s))∆s||

= sup
t≥0

||
∫ t

0

Gj(s) · uj(s)∆s||

≥ sup
t≥0

∫ t

0

|Gij(s)|∆s

=

∫ ∞

0

|Gij(s)|∆s > β > η,

which is a contradiction. Thus, the claim follows.

The next theorem demonstrates the equivalence of exponential and BIBO sta-

bility in the time invariant case. Recall that this is a notion we currently lack in the

time varying case.

Theorem 3.22 (Equivalence of BIBO and Exponential Stability). Suppose the linear

regressive time invariant state equation

x∆(t) = Ax(t) + Bu(t), x(t0) = x0,

y(t) = Cx(t),

is controllable and observable. Then the system is uniformly bounded-input, bounded

output stable if and only if it is exponentially stable.

Proof. If the system is exponentially stable, then by Theorem 3.17,

∫ ∞

0

||CeA(t, 0)B|| ∆t ≤ ||C|| ||B||
∫ ∞

0

||eA(t, 0)|| ∆t ≤ η.
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Conversely, suppose the system is uniformly bounded-input, bounded output

stable. Then ∫ ∞

0

||CeA(t, 0)B|| ∆t < ∞,

which implies

lim
t→∞

CeA(t, 0)B = 0. (3.17)

Using the representation of the matrix exponential given earlier in terms of the

transform, we may write

CeA(t, 0)B =
m∑

k=1

ψk∑
j=1

Nkj
fj−1(µ, λk)

(j − 1)!
eλk

(t, 0), (3.18)

where the λk are the distinct eigenvalues of A, the Nkj are constant matrices, and

the fj(µ, λk) are the terms from the residue calculations. In this form,

d

∆t
CeA(t, 0)B =

m∑

k=1

(
Nk1λk +

ψk∑
j=2

(
f∆

j−1(µ, λk)(1 + µ(t)λk)

(j − 2)!
+

λkfj−1(µ, λk)

(j − 1)!

))
eλk

(t, 0).

If this function does not to go to zero as t →∞, then using (3.18), we could compare

this result with (3.17) to obtain a contradiction. Thus,

lim
t→∞

(
d

∆t
CeA(t, 0)B

)
= lim

t→∞
CAeA(t, 0)B = lim

t→∞
CeA(t, 0)AB = 0,

where the last equation holds by noting that if A is constant, then A and eA(t, 0)

commute. Similarly, it can easily be shown that any order time derivative of the

exponential goes to zero as t →∞. Thus,

lim
t→∞

CAieA(t, 0)AjB = 0, i, j = 0, 1, . . .

It then follows that

lim
t→∞




C

CA

...

CAn−1




eA(t, 0)

[
B AB . . . An−1B

]
= 0. (3.19)
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But, the system is controllable and observable, and so we can form invertible ma-

trices Ga
C and Ga

O by choosing n independent columns of the controllability matrix

and n independent rows of the observability matrix, respectively. Then, by (3.19),

lim
t→∞

Ga
OeA(t, 0)Ga

C = 0. Hence, lim
t→∞

eA(t, 0) = 0 and so the exponential stability fol-

lows from the arguments given in Theorem 3.18.

We make use of the preceding theorem in the following example.

Example 3.6. Suppose T is a time scale with 0 ≤ µ ≤ 4. The system

x∆(t) =



− 8

45
1
30

− 1
45

− 1
10


 x(t) +




2

1


 u(t), x(0) = x0,

y(t) =

[
3 4

]
x(t).

is controllable by Example 3.1 and observable by Example 3.2. The eigenvalues of

A are λ1 = −1
9

and λ2 = −1
6
. Note that the assumption on T implies λ1, λ2 ∈ S(C),

the stability region of T. Thus, by Theorem 3.18, the system is exponentially stable.

Theorem 3.22 then says that the system is also BIBO stable.

As we have seen, the Laplace transform can be a useful tool for analyzing

stability in the time invariant case. With this in mind, we desire a theorem that

determines if a system is BIBO stable by examining its transfer function. The

following theorem does this.

Theorem 3.23. The regressive linear time invariant system

x∆(t) = Ax(t) + Bu(t), x(t0) = x0,

y(t) = Cx(t),

is bounded-input, bounded-output stable if and only if all poles of the transfer function

G(z) = C(zI − A)−1B are contained in S(C).
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Proof. If each entry of G(z) has poles that lie in S(C), then the partial fraction

decomposition of G(z) discussed earlier shows that each entry of G(t) has a sum

of “polynomial-multiplied exponential terms” form. Since the exponentials will all

have subscripts living in the stability region,

∫ ∞

0

||G(t)||∆t < ∞,

and so the system is bounded-input, bounded-output stable.

Conversely, if ∫ ∞

0

||G(t)||∆t < ∞,

then the exponential terms in any entry of G(t) must have subscripts that lie in the

stability region by using a standard contradiction argument. Thus, every entry of

G(z) must have poles that lie in the stability region.

3.5 Linear Feedback

In this section, we examine linear feedback in systems. In particular, we focus

on state feedback and leave output feedback as an area of future research outside the

scope of this dissertation.

We begin by defining several ubiquitous terms in standard linear systems the-

ory. The open loop state equation is given by

x∆(t) = A(t)x(t) + B(t)u(t), x(t0) = x0,

y(t) = C(t)x(t).

This equation is called open loop because the controller computes its input into the

system using only the current state and its model of the system.

In linear control, linear state feedback replaces the input u(t) by an expression

of the form u(t) = K(t)x(t) + N(t)r(t), where r(t) represents a new input signal,

and K(t) ∈ Rm×n, N(t) ∈ Rm×m are rd-continuous. Thus, substituting the linear
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feedback into the original equation yields the closed loop state equation given by

x∆(t) = [A(t) + B(t)K(t)] x(t) + B(t)N(t)r(t), x(t0) = x0,

y(t) = C(t)x(t).

This equation is termed closed loop because the outputs of the system are fed back

to the inputs of the controller. That is, process inputs have have an effect on process

outputs which is measured in some way and then processed by the controller; the

resulting control signal is used as an input to the process, closing the loop (see [21]).

For linear output feedback, we choose u(t) as

u(t) = L(t)y(t) + N(t)r(t).

In this case, the new resulting state equation is

x∆(t) = [A(t) + B(t)L(t)C(t)] x(t) + B(t)N(t)r(t), x(t0) = x0,

y(t) = C(t)x(t).

In what follows, we will need to use the inverse of the matrix I − F (z), where

F (z) is a matrix of strictly-proper rational functions of z. Invertibility follows from

noting that the function det [I − F (s)] is a rational function of z, and it must be a

nonzero rational function since ||F (z)|| → 0 as |z| → ∞. Thus, [I − F (z)]−1 exists

for all but a finite number of values for z, and it is a matrix of rational functions.

We begin by comparing the transition matrices of the open-loop and closed-

loop equations.

Theorem 3.24 (Equivalence of Transition Matrices). If ΦA(t, τ) is the transition ma-

trix for the corresponding open-loop state equation

x∆(t) = A(t)x(t) + B(t)u(t), x(t0) = x0,

y(t) = C(t)x(t),
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and ΦA+BK(t, τ) is the transition matrix for the corresponding closed-loop equation

x∆(t) = [A(t) + B(t)K(t)] x(t) + B(t)N(t)r(t), x(t0) = x0,

y(t) = C(t)x(t),

resulting from linear state feedback, then

ΦA+BK(t, τ) = ΦA(t, τ) +

∫ t

τ

ΦA(t, σ(s))B(s)K(s)ΦA+BK(s, τ)∆s.

If the open-loop equation and state feedback are both time-invariant, then the Laplace

transform of the closed-loop matrix exponential can be expressed in terms of the

Laplace transform of the open-loop matrix exponential as

(zI − A−BK)−1 =
[
I − (zI − A)−1BK

]−1
(zI − A)−1.

Proof. For the first claim, let τ be arbitrary but fixed. Evaluation of the right hand

side of the equation at t = τ yields the identity matrix. Differentiating the right

side of the equation with respect to t yields

d

∆t

[
ΦA(t, τ) +

∫ t

τ

ΦA(t, σ(s))B(s)K(s)ΦA+BK(s, τ)∆s

]

= A(t)ΦA(t, τ)

+ A(t)

∫ t

τ

ΦA(t, σ(s))B(s)K(s)ΦA+BK(s, τ)∆s + ΦA(σ(t), σ(t))B(t)K(t)ΦA+BK(t, τ)

= A(t)

[
ΦA(t, τ) +

∫ t

τ

ΦA(t, σ(s))B(s)K(s)ΦA+BK(s, τ)∆s

]
+ B(t)K(t)ΦA+BK(t, τ).

That is, the right hand side of the last equation satisfies the matrix differential

equation that uniquely determines ΦA+BK(t, τ) for any τ .

For the time invariant case, with τ = 0, the equation becomes

eA+BK(t, 0) = eA(t, 0) +

∫ t

0

eA(t, σ(s))BKeA+BK(s, 0)∆s.

Transforming each side and recognizing the right hand side as a convolution produces

(zI − A−BK)−1 = (zI − A)−1 + (zI − A)−1BK(zI − A−BK)−1,

an expression that is easily rewritten to give the claimed form.
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Theorem 3.25. If G(t, σ(s)) is the weighting pattern of the regressive open-loop time

invariant state equation, and Ĝ(t, σ(s)) is the weighting pattern of the regressive

closed-loop time invariant state equation resulting from static output feedback, then

the transfer functions of the two state equations are related by

Ĝ(z) = [I −G(z)L]−1 G(z)N.

Proof. The preceding theorem with τ = 0 yields

eA+BK(t, 0) = eA(t, 0) +

∫ t

0

eA(t, σ(s))BKeA+BK(s, 0)∆s.

Replace K with LC to reflect output feedback, and then premultiply by C and

postmultiply by BN to obtain

CeA+BK(t, 0)BN = CeA(t, 0)BN +

∫ t

0

CeA(t, σ(s))BLCeA+BK(s, 0)BN∆s,

or equivalently,

Ĝ(t, 0) = G(t, 0)N +

∫ t

0

G(t, σ(s))LĜ(s, 0)∆s.

Again, recognizing the right hand side as a convolution and transforming yields

Ĝ(z) = G(z)N + G(z)LĜ(z),

from which the claim follows immediately.

We would now like to consider when it is in fact possible to stabilize the system

in question, and how to do so. To answer this, we first need a couple of lemmas.

Definition 3.10. The regressive linear state equation

x∆(t) = A(t)x(t) + B(t)u(t), x(t0) = x0,

y(t) = C(t)x(t),
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is called uniformly exponentially stable with rate λ > 0, where −λ ∈ R+, if there

exists a constant γ > 0 such that for any t0 and x0 the corresponding solution

satisfies

||x(t)|| ≤ γe−λ(t, t0)||x0||, t ≥ t0.

Lemma 3.2. The Hilger circle H is closed under the operation ⊕ for all t ∈ T.

Proof. Let α ∈ C be such that |α| < 1. Then for a given graininess µ, the number

a = α−1
µ
∈ H. Similarly, let β ∈ C be such that |β| < 1, so that b = β−1

µ
∈ H. We

set

c := a⊕ b = a + b + µab.

Now, c ∈ H if there exists a γ ∈ C such that |γ| < 1 with c = γ−1
µ

. We claim that

the choice γ = αβ will suffice, from which the claim follows immediately.

Indeed, with this choice of γ, we have that

γ − 1

µ
=

α− 1

µ
+

β − 1

µ
+ µ

α− 1

µ

β − 1

µ
,

and since |γ| = |α| · |β| < 1, the claim follows.

Lemma 3.3 (Stability Under State Variable Change). The regressive linear state

equation

x∆(t) = A(t)x(t) + B(t)u(t), x(t0) = x0,

y(t) = C(t)x(t),

is uniformly exponentially stable with rate λ+α
1+µ∗α , where λ, α > 0 such that −λ ∈ R+,

if the linear state equation

z∆(t) = [A(t)(1 + µα) + αI]z(t),

is uniformly exponentially stable with rate λ.
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Proof. By direct calculation, x(t) satisfies

x∆(t) = A(t)x(t), x(t0) = x0,

if and only if z(t) = eα(t, t0)x(t) satisfies

z∆(t) = [A(t)(1 + µα) + αI]z(t), z(t0) = x0. (3.20)

Now assume there exists a γ > 0 such that for any x0 and t0 the solution of (3.20)

satisfies

||z(t)|| ≤ γe−λ(t, t0)||x0||, t ≥ t0.

Then, substituting for z(t) yields

||eα(t, t0)x(t)|| = eα(t, t0)||x(t)|| ≤ γe−λ(t, t0)||x0||,

so that

||x(t)|| ≤ γe−λªα(t, t0) ≤ γe−(λ+α)/(1+µ∗α)(t, t0).

An application of Lemma 3.2 then gives the result.

In order to achieve the desired stabilization result, we need to define a weighted

version of the controllability Gramian defined earlier as

GC(t0, tf ) =

∫ tf

t0

ΦA(t0, σ(s))B(s)BT (s)ΦT
A(t, σ(s))∆s. (3.21)

To this end, for α > 0 define the matrix GCα(t0, tf ) by

GCα(t0, tf ) =

∫ tf

t0

(eα(t0, s))
4ΦA(t0, σ(s))B(s)BT (s)ΦT

A(t0, σ(s))∆s. (3.22)

We are now in position to prove the following major result of Chapter 3.

Theorem 3.26 (Gramian Exponential Stability Criterion). Let T be a time scale with

bounded graininess. For the regressive linear state equation

x∆(t) = A(t)x + B(t)u(t), x(t0) = x0,

y(t) = C(t)x(t),
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suppose there exist positive constants ε1, ε2 and a strictly increasing function C : T→
T such that 0 < C(t) − t ≤ M holds for some constant 0 < M < ∞ and all t ∈ T
with

ε1I ≤ GC(t, C(t)) ≤ ε2I, (3.23)

for all t. Then given a positive constant α, the state feedback gain

K(t) = −BT (t)(I + µ(t)AT (t))−1G−1
Cα

(t, C(t)), (3.24)

is such that the resulting closed-loop state equation is uniformly exponentially stable

with rate α.

Proof. We first note that for N = sup
t∈T

log(1 + µ(t)α)

µ(t)
, we have 0 < N < ∞ since T

has bounded graininess. Thus,

eα(t, C(t)) = exp

(
−

∫ C(t)

t

log(1 + µ(s)α)

µ(s)
∆s

)

≥ exp

(
−

∫ C(t)

t

N∆s

)

= e−N(C(t)−t)

≥ e−MN .

Comparing the quadratic forms xTGCα(t, C(t))x and xTGC(t, C(t))x using their re-

spective definitions (3.21) and (3.22) gives

e−4MNGC(t, C(t)) ≤ GCα(t, C(t)) ≤ GC(t, C(t)),

for all t. Thus, (3.23) implies

ε1e
−4MNI ≤ GCα(t, C(t)) ≤ ε2I (3.25)

for all t, and so the existence of G−1
Cα

(t, C(t)) is immediate. Now, we show that the

linear state equation

z∆(t) = [Â(t)(1 + µ(t)α) + αI]z(t), (3.26)
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where Â(t) = A(t)−B(t)BT (t)(I+µ(t)AT (t))G−1
Cα

(t, C(t)), is uniformly exponentially

stable by applying Theorem 1.23 with the choice

Q(t) = G−1
Cα

(t, C(t)). (3.27)

Lemma 3.3 then gives the desired result. To apply the theorem, we first note that

Q(t) is symmetric and continuously differentiable. Thus, (3.25) implies

1

ε2

I ≤ Q(t) ≤ e4MN

ε1

I, (3.28)

for all t. Hence, it only remains to show that there exists ν > 0 such that

([
I + µ(t)

[
(1 + µ(t)α)Â(t) + αI

]T
]

Q(σ(t))
[
I + µ(t)

[
(1 + µ(t)α)Â(t) + αI

]]
−Q(t)

)

µ(t)

is less than or equal to −νI.

We begin with the first term, writing

[
I + µ(t)

[
(1 + µ(t)α)Â(t) + αI

]T
]

Q(σ(t))
[
I + µ(t)

[
(1 + µ(t)α)Â(t) + αI

]]

= (1 + µ(t)α)2
[[

I + µ(t)AT (t)
]− G−1

Cα
(t, C(t)) [I + µ(t)A(t)]−1 µ(t)B(t)BT (t)

]

· G−1
Cα

(σ(t), C(σ(t)))
[
[I + µ(t)A(t)]− µ(t)B(t)BT (t)

[
I + µ(t)AT (t)

]−1 G−1
Cα

(t, C(t))
]
.

We pause to establish an important identity. Notice that

[I + µ(t)A(t)]GCα(t, C(t))
[
I + µ(t)AT (t)

]

= µ(t)B(t)BT (t) +
GCα(σ(t), C(t))

(1 + µ(t)α)4
. (3.29)

This leads to

I − [I + µ(t)A(t)]−1 µ(t)B(t)BT (t)
[
I + µ(t)AT (t)

]−1 G−1
Cα

(t, C(t))

= (1 + µ(t)α)−4 [I + µ(t)A(t)]−1 GCα(σ(t), C(t))
[
I + µ(t)AT (t)

]−1

·G−1
Cα

(t, C(t)), (3.30)
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which in turn yields

I − G−1
Cα

(t, C(t)) [I + µ(t)A(t)]−1 µ(t)B(t)BT (t)
[
I + µ(t)AT (t)

]−1

= (1 + µ(t)α)−4G−1
Cα

(t, C(t)) [I + µ(t)A(t)]−1 GCα(σ(t), C(t))

· [I + µ(t)AT (t)
]−1

. (3.31)

The first term can now be rewritten as

(1 + µ(t)α)2
[[

I + µ(t)AT (t)
]− G−1

Cα
(t, C(t)) [I + µ(t)A(t)]−1 µ(t)B(t)BT (t)

]

· G−1
Cα

(σ(t), C(σ(t)))
[
[I + µ(t)A(t)]− µ(t)B(t)BT (t)

[
I + µ(t)AT (t)

]−1 G−1
Cα

(t, C(t))
]

= (1 + µ(t)α)2
[
I − G−1

Cα
(t, C(t)) [I + µ(t)A(t)]−1 µ(t)B(t)BT (t)

[
I + µ(t)AT (t)

]−1
]

· [
I + µ(t)AT (t)

]G−1
Cα

(σ(t), C(t)) [I + µ(t)A(t)]

·
[
I − [I + µ(t)A(t)]−1 µ(t)B(t)BT (t)

[
I + µ(t)AT (t)

]−1 G−1
Cα

(t, C(t))
]

Using (3.30) and (3.31), we can now write

[
I + µ(t)

[
(1 + µ(t)α)ÂT (t) + αI

]]
Q(σ(t))

[
I + µ(t)

[
(1 + µ(t)α)Â(t) + αI

]]

= (1 + µ(t)α)−6G−1
Cα

(t, C(t)) [I + µ(t)A(t)]−1 GCα(σ(t), C(t))G−1
Cα

(σ(t), C(σ(t)))

· GCα(σ(t), C(t))
[
I + µ(t)AT (t)

]−1 G−1
Cα

(t, C(t)). (3.32)

On the other hand, from the definition of GCα(t, C(t)), we have

GCα(σ(t), C(σ(t))) ≥ GCα(σ(t), C(t)),

which in turn implies

G−1
Cα

(σ(t), C(σ(t))) ≤ G−1
Cα

(σ(t), C(t)).

Combining this with (3.32) gives

[
I + µ(t)

[
(1 + µ(t)α)ÂT (t) + αI

]]
Q(σ(t))

[
I + µ(t)

[
(1 + µ(t)α)Â(t) + αI

]]

≤ (1 + µ(t)α)−6G−1
Cα

(t, C(t))
[
[I + µ(t)A(t)]−1 GCα(σ(t), C(t))

[
I + µ(t)AT (t)

]−1
]

· G−1
Cα

(t, C(t)).
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Applying (3.29) again yields

[
I + µ(t)

[
(1 + µ(t)α)ÂT (t) + αI

]]
Q(σ(t))

[
I + µ(t)

[
(1 + µ(t)α)Â(t) + αI

]]

≤ (1 + µ(t)α)−6G−1
Cα

(t, C(t))

·
[
(1 + µ(t)α)4GCα(t, C(t))− (1 + µ(t)α)4 [I + µ(t)A(t)]−1 µ(t)B(t)BT (t)

[
I + µ(t)AT (t)

]−1
]

· G−1
Cα

(t, C(t))

≤ (1 + µ(t)α)−2G−1
Cα

(t, C(t)).

Thus,
([

I + µ(t)
[
(1 + µ(t)α)ÂT (t) + αI

]]
Q(σ(t))

[
I + µ(t)

[
(1 + µ(t)α)Â(t) + αI

]]
−Q(t)

)

µ(t)

≤ −(1 + µ(t)α)2 − 1

µ(t)(1 + µ(t)α)2
G−1

Cα
(t, C(t))

≤ − (1 + µ(t)α)2 − 1

µ(t)ε2(1 + µ(t)α)2
I.

Now, the quantity ((1 + µ(t)α)2 − 1) / (µ(t)ε2(1 + µ(t)α)2) is certainly not constant,

but it can be bounded by a quantity that is (here µ∗ = µmax):

(1 + µ(t)α)2 − 1

µ(t)ε2(1 + µ(t)α)2
=

2α + µ(t)α2

ε2(1 + µ(t)α)2
≥ α

ε2(1 + µ∗α)2
.

Thus, if we set ν = α/(ε2(1 + µ∗α)2), then
([

I + µ(t)
[
(1 + µ(t)α)ÂT (t) + αI

]]
Q(σ(t))

[
I + µ(t)

[
(1 + µ(t)α)Â(t) + αI

]]
−Q(t)

)

µ(t)

is in fact less than or equal to −νI.

Some questions remain regarding Theorem 3.26. What types of functions C(t),

which we term the compactification operator, will suffice to meet the hypothesis of

the preceding theorem? For T = R, it is known that C(t) = t + δ for any δ > 0 is

sufficient, while on T = Z, the function C(t) = t + k for k ∈ N meets the criteria.

In fact, our result agrees with the results known in each of these cases: on R, for

C(t) = t+δ and K(t) = −BT (t)G−1
Cα

(t, t+δ), it is proved in [13] and [39] that the result
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holds, as is the case on Z, where C(t) = t + k and K(t) = −BT (t)A−TG−1
Cα

(t, t + k).

(Recall that the time scales analysis deals with the difference form rather than the

recursive form, so we do indeed expect to get a shift of the known result on Z.) For

the time scale Pa,b defined earlier, a candidate for C(t) is given by C(t) = t + a + b.

If we examine Z a little more closely, we see that on this time scale the choice

C(t) = t + k is really C(t) = σk(t), which leads to the conclusion that a possible

choice for a purely discrete time scale T in general (that is, a time scale with no

right dense points) could be C(t) = σk(t) for some k > 0 ∈ N. For a general time

scale T with both right dense and right scattered points, one possible choice for C(t)

is

C(t) =





t + δ1, if t is right dense,

σk(t), if σi(t) 6= t for all 0 ≤ i ≤ k,

σk(t) + δ2, else.

We now demonstrate the preceding theorem with an example.

Example 3.7. Let p, q ∈ R+ be constants such that the system

x∆(t) =




9
10

(
√

4+ep(t,0))∆√
4+ep(t,0)

+ 1
10

(
√

10+eq(t,0))∆√
10+eq(t,0)

3
10

(
√

4+ep(t,0))∆√
4+ep(t,0)

− 3
10

(
√

10+eq(t,0))∆√
10+eq(t,0)

3
10

(
√

4+ep(t,0))∆√
4+ep(t,0)

− 3
10

(
√

10+eq(t,0))∆√
10+eq(t,0)

1
10

(
√

4+ep(t,0))∆√
4+ep(t,0)

+ 9
10

(
√

10+eq(t,0))∆√
10+eq(t,0)


 x(t)

+



√

10
10

0

0 −
√

10
10


 u(t),

y(t) = x(t),

with initial condition

x(0) =




3
√

5
√

11
√

5 −3
√

11


 ,

is regressive.
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A direct calculation (i.e. verification) shows that the transition matrix is given

by

ΦA(t, σ(s)) =




3(
√

4 + ep(t, σ(s)))
√

10 + eq(t, σ(s))
√

4 + ep(t, σ(s)) −3(
√

10 + eq(t, σ(s)))


 .

Now, we have

ΦA(t, σ(s))B(s)BT (s)ΦT
A(t, σ(s))

=




9
10

(4 + ep(t, σ(s))) + 1
10

(10 + eq(t, σ(s))) 3
10

(4 + ep(t, σ(s))− 3
10

(10 + eq(t, σ(s)))

3
10

(4 + ep(t, σ(s))− 3
10

(10 + eq(t, σ(s))) 1
10

(4 + ep(t, σ(s))) + 9
10

(10 + eq(t, σ(s)))


 ,

which can be diagonalized as


3 −1
3

1 1







4 + ep(t, σ(s)) 0

0 10 + eq(t, σ(s))







3
10

1
10

− 3
10

9
10


 .

Thus, GC(t, C(t)) can be written as

GC(t, C(t)) =

∫ C(t)

t




3 −1
3

1 1







4 + ep(t, σ(s)) 0

0 10 + eq(t, σ(s))







3
10

1
10

− 3
10

9
10


 ∆s.

For s ≥ t, the eigenvalues λ1(t, σ(s)) = 4+ep(t, σ(s)) and λ2(t, σ(s)) = 10+eq(t, σ(s))

have the bounds 4 ≤ λ1(t, σ(s)) ≤ 5 and 10 ≤ λ2(t, σ(s)) ≤ 11, respectively. Thus,


3 −1
3

1 1







∫ C(t)

t




4 0

0 4


 ∆s







3
10

1
10

− 3
10

9
10




≤ GC(t, C(t))

≤




3 −1
3

1 1







∫ C(t)

t




11 0

0 11


 ∆s







3
10

1
10

− 3
10

9
10


 ,

or equivalently 


3 −1
3

1 1







4(C(t)− t) 0

0 4(C(t)− t)







3
10

1
10

− 3
10

9
10




≤ GC(t, C(t))

≤




3 −1
3

1 1







11(C(t)− t) 0

0 11(C(t)− t)







3
10

1
10

− 3
10

9
10


 .
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Thus, if we assume 0 < N ≤ C(t)− t ≤ M < ∞, then

4NI ≤ GC(t, C(t)) ≤ 11MI.

By Theorem 3.26, the closed loop equation

x∆(t) = (A + BK)(t)x(t),

y(t) = x(t),

is uniformly exponentially stable if we choose α > 0 and

K(t) = −BT (t)(I + µ(t)AT (t))−1G−1
Cα

(t, C(t)).



CHAPTER FOUR

Conclusions and Future Directions

In this dissertation, we have examined several different aspects of a linear

systems theory in the arbitrary time scale setting. The Laplace transform given by

Bohner and Peterson in [10] has been analyzed and given a rigorous foundation. The

concepts of controllability, observability, and reachability have been introduced and

conditions for a system to possess these properties presented. Exponential stability

as defined by DaCunha in [15, 16] has also been discussed further, with particular

interest concerning its relation to bounded-input, bounded-output stability, another

concept that has been defined in the dissertation. We also examined the effects of

linear state feedback in systems and showed that it is possible to stabilize a system

whose controllability Gramian is bounded by positive perturbations of the identity

regardless of the spacing of the time scale, as long as the time scale does not have

arbitrarily large spacing.

The applications of the theory could most likely happen in the area of adaptive

control (see [23], [24], and [25]). In particular, in real time communication networks,

it would be advantageous to be able to analyze the system without knowing the

time scale a priori. Indeed, an analysis that allows the time scale to be created “on

the fly” would be useful as the times of serious activity on the network are most

often unknown and can be difficult to account for. Resources used by the network

could be saved and bandwidth limitations maintained if the system does not have to

be sampled frequently in an uniform fashion as is currently done. Thus, the utility

of our analysis becomes self evident: we are never concerned with the underlying

spacing to obtain our results.
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As for future directions, there are certain crucial tools in systems analysis still

missing. For example, we currently lack a frequency analysis in the general time

scale setting. This tool is critical for determining how systems and their dynamics

evolve in time, and it is also useful for feedback as it can be used to select appropriate

feedback gains to obtain desired physical properties of systems. Another tool that we

lack currently is the theory of output feedback and observers. These are necessary

to design effective controlled systems that achieve prescribed results. The results

established in this dissertation are useful in this regard since we now know how to

invert the transform, which provides the basis for associating the usual trigonometric

functions with their generalized transforms thereby understanding frequency. The

results concerning state feedback give insight as to determining corresponding results

for output feedback.

Another area that deserves attention is the control of systems involving bound-

ary value problems (BVPs). To the author’s knowledge, at present there is nothing

in the literature that deals with this concept in the time scale setting. Thus, it is an

area ripe for research.
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