
ABSTRACT

Lyapunov Stability and Floquet Theory for
Nonautonomous Linear Dynamic Systems on Time Scales

Jeffrey J. DaCunha

Advisor: John M. Davis, Ph.D.

In this work, the stability of nonautonomous linear dynamic systems on time

scales is investigated and analyzed. A unified and extended version of Lyapunov’s

direct method is developed and yields criteria for uniform stability and uniform expo-

nential stability of a linear dynamic system. We investigate “slowly varying” nonau-

tonomous systems and provide a spectral condition on the system matrix sufficient

for exponential stability. Perturbations of the unforced system are studied and an in-

stability criterion is introduced. We develop a comprehensive, unified Floquet theory

including Lyapunov transformations and their various stability preserving properties,

as well as a unified Floquet theorem which establishes a canonical Floquet decom-

position on time scales in terms of the generalized exponential function. We then

use these results to study homogenous as well as nonhomogeneous periodic problems.

Furthermore, we explore the connection between Floquet multipliers and Floquet ex-

ponents via monodromy operators and establish a spectral mapping theorem on time

scales. We conclude with several nontrivial examples to show the utility of this theory.
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CHAPTER ONE

An Introduction and Overview

1.1 Unification and Extension

In 1988, Stephan Hilger’s Ph.D. thesis [24] introduced the theory of time scales

for the purpose of unifying discrete and continuous analysis. By developing a theory

for “dynamic equations” on very general domains (time scales), one can produce a

more general result that can then be applied to the desired domain which can be a

hybrid discrete/continuous domain.

There are many results from differential equations that carry over quite nat-

urally and easily to difference equations, while others have a completely different

structure from their continuous counterparts. The study of dynamic equations on

time scales sheds new light on the discrepancies between continuous differential equa-

tions and discrete difference equations. It also prevents one from proving a result

twice, once for differential equations and once for difference equations. The general

idea, which is the main goal of Bohner and Peterson’s excellent introductory text [6],

is to prove a result for a dynamic equation where the domain of the unknown function

is a so-called time scale.

One can choose the time scale to be the set of the reals. The general result

obtained yields the same result concerning an ordinary differential equation. One can

also choose the time scale to be the set of integers. The general result is the same

result one would obtain concerning a difference equation. However, since there are

infinitely many other time scales that one may work with besides the reals and the

integers, one has a much more general result. Thus, the two main features of the time

scales calculus are unification and extension.

In Chapter 2, the time scales calculus is developed. A time scale T is an

arbitrary closed subset of the reals. For functions f : T → R a derivative and an

1
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integral are introduced. Fundamental results, e.g., the product rule and the quotient

rule, are presented. Other results concerning differentiability and integrability are

stated, as they will be necessary for the subsequent portion of this dissertation.

The Hilger complex plane is introduced, along with the cylinder and inverse

cylinder transformations. The cylinder transformation is used to develop the gen-

eralized exponential function on time scales, defined as the solution of a first order

dynamic initial value problem. Properties of the time scale exponential function

are developed. For the nonhomogeneous case, a generalized form of the variation of

constants is used.

Uniqueness and existence theorems are also presented and the matrix exponen-

tial function on a time scale is introduced. Properties of the transition matrix and

the matrix exponential function are stated and used throughout.

In Chapter 3, general definitions are provided concerning the matrix norms used

throughout the dissertation as well as the notion of definiteness of a matrix. The

concepts of uniform stability, uniform exponential stability, and uniform asymptotic

stability are also defined. Several theorems which characterize the stability of the

system with respect to the transition matrix are stated and proved.

1.2 Lyapunov Stability Theory

It is widely known that the stability characteristics of an autonomous linear

system of differential or difference equations can be characterized completely by the

placement of the eigenvalues of the system matrix [3, 22]. Recently, Pötzsche, Sieg-

mund, and Wirth [40] authored a landmark paper which developed necessary and

sufficient conditions for the stability of time invariant linear systems on arbitrary

time scales. Their characterization included the sufficient condition that the eigen-

values of the system matrix be contained in the possibly disconnected set of stability

S(T) ⊂ C−, which may change for each time scale on which the system is stud-
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ied. The subsequent paper by Hoffacker and Gard [16] further examined the stability

characteristics of time varying and time invariant scalar dynamic equations on time

scales. This is the first paper to characterize the behavior of a time varying first order

dynamic equation on arbitrary time scales.

The intent of Chapter 4 is to extend the current results of autonomous linear

dynamic systems to the more general case of nonautonomous linear dynamic systems

on a large class of time scales (i.e. those time scales with bounded graininess which

are unbounded above). We show that, in general, the placement of eigenvalues of the

system matrix does not guarantee the stability or exponential stability of the time

varying system, as is the case with autonomous linear systems of differential and

difference equations [7, 22, 30, 31, 42] and certain dynamic equations on time scales

[40]. We unify and extend the theorems of eigenvalue placement in the proper region

of the complex plane for sufficiently slowly-varying system matrices of continuous and

discrete nonautonomous systems, which yields exponential stability of the system, as

in the classic papers of Desoer [13, 14], Rosenbrock [41], and the relatively recent

paper by Solo [46]. To develop this theory for nonautonomous systems, we unify the

theorems of uniform stability, uniform exponential stability, and uniform asymptotic

stability for time varying systems by implementing a generalized time scales version

of the direct (second) method of Lyapunov [35], as in the standard papers on stability

of continuous and discrete dynamical systems by Kalman and Bertram [30, 31].

In his dissertation of 1892, Lyapunov developed two methods for analyzing the

stability of differential equations. His direct method has become the most widely

used tool for stability analysis of linear and nonlinear systems in both differential and

difference equations. The idea involves measuring the energy of the system, usually

the norm of the state variables, as the system evolves in time. The objective of the

approach is the following: To answer questions of stability of differential and difference

equations, utilizing the given form of the equations but without explicit knowledge of
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the solutions. The principal idea of the direct method is contained in the following

physical reasoning: If the rate of change, dE(x)/dt, of the energy E(x) of an isolated

physical system is negative for every possible state x, except for a single equilibrium

state xe, then the energy will continually decrease until it finally assumes its minimum

value E(xe). In other words, a system that is perturbed from its equilibrium state

will always return to it. This is the intuitive concept of stability. It follows that the

mathematical counterpart of the preceding statement is the following: A dynamic

system is stable (in the sense that it returns to equilibrium after any perturbation)

if and only if there exists a “Lyapunov function,” i.e., some scalar function V (x)

of the state with the properties: (a) V (x) > 0, V̇ (x) < 0 when x 6= xe, and (b)

V (x) = V̇ (x) = 0 when x = xe.

In engineering applications and applied mathematics problems, a solution usu-

ally is not readily available nor easily calculated. As in adaptive control, which was

born from a desire to stabilize certain classes of continuous linear systems without

the need to explicitly identify the unknown system parameters, even a knowledge of

the system matrix itself may not be fully available. The inherent beauty and ele-

gance of the direct method of Lyapunov is that knowledge of the exact solution is

not necessary. The qualitative behavior of the solution to the system (i.e. stability

or instability) can be investigated without computing the actual solution.

By unifying and extending Lyapunov’s direct method to nonautonomous linear

systems on time scales, we encounter the possibility of a time domain consisting of

nonuniform distance between successive points. This proves to be a nontrivial issue

and hence is seldom dealt with in the literature. It is, however, a rapidly increasing

theme in many engineering applications, such as the papers by Ilchmann, Owens,

and Prätzel-Wolters [26], Ilchmann and Ryan [27], and Ilchmann and Townley [28],

which deal with high gain adaptive controllers and digital systems, as well as the

very recent results from Gravagne, Davis, DaCunha, and Marks [20, 21] which give



5

new algorithms for adaptive controllers and bandwidth reduction using controller area

networks via nonuniform sampling. The time scale methods introduced and developed

in this paper allow the examination and analyzation of the stability characteristics

of dynamical systems without regard to the particular domain of the system, i.e.

continuous, discrete, or hybrid.

In Section 4.1, the general idea of the stability of a system is investigated and a

quadratic Lyapunov function is developed for use in the remaining part of the chapter.

Sections 4.2 and 4.3 introduce the unified theorems of uniform stability and uniform

exponential stability of linear dynamic systems on time scales, as well as illustrations

of these theorems in examples. The generalized Lyapunov matrix equation on a time

scale is introduced in Section 4.4 and a closed form solution is given. Section 4.5

gives conditions on the eigenvalues of a sufficiently “slowly varying” system matrix

which ensures exponential stability of the system solution. In Section 4.6, the sta-

bility properties of systems with linear and nonlinear perturbations are investigated.

Finally, Section 4.7 demonstrates how the quadratic Lyapunov function developed in

Section 4.1 can also be used to determine the instability of a system.

1.3 The Lyapunov Transformation and Floquet Theory

One of the many applications of the Lyapunov transformation of variables in-

cludes generating different state variable descriptions of linear time invariant systems

because different state variable descriptions correspond to different and perhaps more

advantageous points of view in determining the system’s output characteristics. This

is useful in signals and systems applications for the simple fact that different descrip-

tions of state variables allow usage of linear algebra to design and study the internal

structure of a system. Having the ability to change the internal structure without

changing the input-output behavior of the system is useful for identifying implemen-

tations of these systems that optimize some performance criteria that may not be
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directly related to input-output behavior, such as numerical effects of round-off error

in a computer-based systems implementation. For example, using a transformation

of variables on a discrete time nondiagonal 2 × 2 system, one can obtain a diagonal

system matrix which separates the state update into two decoupled first-order differ-

ence equations, and, because of its simple structure, this form of the state variable

description is very useful for analyzing the system’s properties [23].

The stability characteristics of a nonautonomous periodic linear system of dif-

ferential or difference equations can be characterized completely by a corresponding

autonomous linear system of differential or difference equations by a periodic Lya-

punov transformation of variables [10, 32, 42]. Without question, the study of periodic

systems in general and Floquet theory in particular has been central to the differ-

ential equations theorist for some time. Researchers have explored these topics for

ordinary differential equations [10, 15, 17, 29, 38, 39, 45, 48], partial differential equa-

tions [8, 11, 17, 33], differential-algebraic equations [12, 34], and discrete dynamical

systems [1, 32, 47]. Certainly [36] is a landmark paper in the area. Not surprisingly,

Floquet theory has wide ranging effects, including extensions from time varying lin-

ear systems to time varying nonlinear systems of differential equations of the form

x′ = f(t, x), where f(t, x) is smooth and ω-periodic in t. The paper by Shi [44]

ensures the global existence of solutions and proves that this system is topologically

equivalent to an autonomous system y′ = g(y) via an ω-periodic transformation of

variables. The theory has also been extended by R. Weikard [48] to nonautonomous

linear systems of the form ż = A(x)z where A : C→ Cn×n is an ω-periodic function

in the complex variable x, whose solutions are meromorphic. With the assumption

that A(x) is bounded at the ends of the period strip, it is shown that there exists

a fundamental solution of the form P (x)eJx with a certain constant matrix J and

function P which is rational in the variable e2πix/ω.



7

In a relatively recent paper by Teplinskĭi and Teplinskĭi [47], Lyapunov transfor-

mations and discrete Floquet theory are extended to countable systems in l∞(N,R).

It is proved that the countable time varying system can be represented by a count-

able time invariant system provided its finite-dimensional approximations can also be

represented by time invariant systems.

Lyapunov transformations and Floquet theory have also been used to analyze

the stability characteristics of quasilinear systems with periodically varying parame-

ters. In 1994, Pandiyan and Sinha [38] introduced a new technique for the investiga-

tion of these systems based on the fact that all quasilinear periodic systems can be

replaced by similar systems whose linear parts are time-invariant, via the well known

Lyapunov-Floquet transformation.

In the paper by Demir [12], the equivalent of Floquet theory is developed for

periodically time-varying systems of linear DAEs: d
dt

(C(t)x) + G(t)x = 0 where the

n × n matrices C(·) (not full rank in general) and G(·) are periodic. This result

is developed for a direct application to oscillators which are ubiquitous in physical

systems: gravitational, mechanical, biological, and especially electronic and optical

ones. For example, in radio frequency communication systems, they are used for

frequency translation of information signals and for channel selection. Oscillators are

also present in digital electronic systems which require a time reference, i.e., a clock

signal, in order to synchronize operations. All physical systems, and in particular

electronic ones, are corrupted by undesired perturbations such as random thermal

noise, substrate and supply noise, etc. Hence, signals generated by practical oscillators

are not perfectly periodic. This performance limiting factor in electronic systems is

also analyzed in [12] and a theory for nonlinear perturbation analysis of oscillators

described by a system of DAEs is developed.

In this dissertation, we extend the current results of continuous and discrete

Floquet theory to the more general case of an arbitrary periodic time scale, which will
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be defined in a subsequent chapter. In particular, one of the main results shows that if

there exists an n×n constant matrix R such that eR(t0 +p, t0) = ΦA(t0 +p, t0) (where

ΦA(t, t0) is the transition matrix for the p-periodic system x∆(t) = A(t)x(t), x(t0) =

x0 and eR(t, t0) is the time scale matrix exponential), then the transition matrix can

be represented by the product of a p-periodic Lyapunov transformation matrix and

a time scale matrix exponential, i.e. ΦA(t, t0) = L(t)eR(t, t0), which is known as the

Floquet decomposition of the transition matrix ΦA(t, t0).

There has been one attempt at generalizing the Floquet decomposition to the

time scales case by Ahlbrandt and Ridenhour [1]. However, there are some important

distinctions between that work and this one. First, Ahlbrandt and Ridenhour use a

different definition of a periodic time scale. Furthermore—and very importantly—

their Floquet decomposition theorem employs the usual exponential function whereas

our approach is more general (and we think more appropriate) since it is in terms

of the generalized time scale exponential function. Finally, we go on to develop

a complete Floquet theory including Lyapunov transformations and their stability

preserving properties, Floquet multipliers, and Floquet exponents.

We also mention that the notion of a generalized time scale matrix logarithm

remains an open question. If the existence of this logarithm can be shown, then the

question of the existence of a solution matrix M to the matrix equation eM(t, τ) = N ,

where M and N are n× n matrices, will be confirmed and the calculation of such a

matrix M will be greatly simplified. As of now, there is no general method or closed

form of the solution matrix M in the general time scale case.

In Chapter 5 the generalized Lyapunov transformation for time scales is devel-

oped and it is shown that the change of variables using the time scales version of this

transformation preserves the stability properties of the system.

In Chapter 6, the notion of a periodic time scale is presented and the main

theorem, the unified and extended version of the Floquet decomposition theorem, is
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introduced for the homogeneous and nonhomogeneous cases of a periodic system on

a periodic time scale. Three examples are given in Section 6.3 to illustrate how the

unified Floquet theory applies in the cases T = R, T = Z, and more interestingly,

when T = P1,1.

Chapter 7 introduces unified theorems involving Floquet multipliers, Floquet

exponents, as well as a generalized spectral mapping theorem for time scales.

In Chapter 8, the examples from Section 6.3 are revisited and the theorems

introduced in Chapter 7 are illustrated.



CHAPTER TWO

The Calculus of Time Scales

The following definitions and theorems, as well as a general introduction to the

theory, can be found in the text by Bohner and Peterson [6].

Definition 2.1. A time scale T is any closed subset of R.

Definition 2.2. The forward jump operator, σ(t), and the backward jump operator,

ρ(t), are defined by

σ(t) = inf{s ∈ T : s > t} and ρ(t) = sup{s ∈ T : s < t}.

Definition 2.3. An element t ∈ T is left-dense, right-dense, left-scattered, right-

scattered if ρ(t) = t, σ(t) = t, ρ(t) < t, σ(t) > t, respectively. Also, inf ∅ := sup T

and sup ∅ := inf T. If T has a right-scattered minimum m, then Tκ = T− {m}, oth-

erwise Tκ = T. If T has a left-scattered maximum M , then Tκ = T−{M}, otherwise

Tκ = T.

Definition 2.4. The distance from an element t ∈ T to its successor is called the

graininess of t and is denoted by µ(t) = σ(t)− t.

We remark that in this dissertation, we denote the maximum graininess of a

time scale as µmax = supt∈T µ(t) and the maximum delta derivative of the graininess

as µ∆
max = supt∈T µ∆(t).

2.1 Examples of Time Scales

Example 2.1. For T = R we have σ(t) = t = ρ(t) and µ(t) = 0. For T = Z we have

σ(t) = t + 1, ρ(t) = t− 1, and µ(t) = 1. See Figure 2.1(a) and (b).

10
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0 1 2 3 4 5
−1

0

1

(a) T = R.

0 1 2 3 4 5
−1

0

1

(b) T = Z.

0 1 2 3 4 5 6 7 8 9 10
−1

0

1

(c) T = 2Z.

0 1 2 3 4 5 6 7 8 9 10
−1

0

1

(d) T = P1,2.

Figure 2.1. Some canonical time scales.

Example 2.2. Let h > 0 be a fixed real number. Define the time scale hZ by

hZ = {hz : z ∈ Z} = {. . . ,−3h,−2h,−h, 0, h, 2h, 3h, . . . }.

Here, σ(t) = t + h, ρ(t) = t− h, and µ(t) = h. See Figure 2.1(c).

Example 2.3. Let a, b > 0 be fixed real numbers. Define the time scale Pa,b by

Pa,b =
∞⋃

k=0

[k(a + b), k(a + b) + a];

that is, Pa,b is a collection of closed intervals anchored at 0, each with length a and

gap length between intervals being b. See Figure 2.1(d). Easy calculations show

σ(t) =





t, t ∈
∞⋃

k=0

[k(a + b), k(a + b) + a),

t + b, t ∈
∞⋃

k=0

{k(a + b) + a},

ρ(t) =





t, t ∈
∞⋃

k=0

(k(a + b), k(a + b) + a],

t− b, t ∈
∞⋃

k=1

{k(a + b)},

and

µ(t) =





0, t ∈
∞⋃

k=0

[k(a + b), k(a + b) + a),

b, t ∈
∞⋃

k=0

{k(a + b) + a}.
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0 1 2 3 4 5 6
−1

0

1

(a) T = 1.4Z.

0 5 10 15 20 25 30 35 40
−1

0

1

(b) T = N2
0.

0 0.5 1 1.5 2 2.5 3 3.5 4
−1

0

1

(c) T = H.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1

0

1

(d) T = K3.

Figure 2.2. More protypical time scales.

Example 2.4. Let q > 1 be a fixed real number. Define the time scale qZ by

qZ = {qz : z ∈ Z} = {. . . , q−3, q−2, q−1, 1, q, q2, q3, . . . }.

Here, σ(t) = qt, ρ(t) = t/q, and µ(t) = (q − 1)t for any t in this time scale. See

Figure 2.2(a). We can then define the similar time scale

qZ = qZ ∪ {0}.

Note that every nonzero point in qZ is isolated, but zero itself is right-dense.

Example 2.5. Define the time scale N2
0 by

N2
0 = {n2 : n ∈ N0} = {0, 1, 4, 9, 16, . . . }.

Here, σ(t) = t + 2
√

t + 1, ρ(t) = t − 2
√

t + 1, and µ(t) = 1 + 2
√

t for any t in this

time scale. See Figure 2.2(b).

Example 2.6. Let n ∈ N0. Define the harmonic numbers Hn recursively by

H0 = 0 and Hn =
n∑

k=1

1

k
.

Then define the time scale

H = {Hn : n ∈ N0}.
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For this time scale, σ(Hn) =
n+1∑

k=1

1

k
, while

ρ(Hn) =





n−1∑

k=1

1

k
, n ≥ 2,

0, n = 0, 1,

and µ(Hn) = 1
n+1

. See Figure 2.2(c).

Example 2.7. A more exotic example of a time scale is the Cantor set which is con-

structed as follows. Let K0 = [0, 1]. To obtain K1, remove the open middle third of

the previous interval to get K1 = [0, 1/3]∪[2/3, 1]. To get K2, remove the open middle-

thirds from each subinterval in K1 so that K2 = [0, 1/9]∪[2/9, 1/3]∪[2/3, 7/9]∪[8/9, 1].

Continue in this way indefinitely. The Cantor set K is defined as

K =
∞⋂

n=0

Kn.

In other words, after continuing the process above indefinitely, the Cantor set is all

the points in [0, 1] that do not get removed (i.e., they must be the endpoints of a

subinterval in some Kn). See Figure 2.2(d) and Figure 2.3.

2.2 Differentiation

Definition 2.5. For f : T → R and t ∈ Tκ, define f∆(t), the delta derivative of f(t),

as the number (when it exists), with the property that, for any ε > 0, there exists a

neighborhood U of t such that

|[f(σ(t))− f(s)]− f∆(t)[σ(t)− s]| ≤ ε|σ(t)− s|, for all s ∈ U.

If f is delta differentiable for every t ∈ Tκ, then f : T → R is delta differentiable on

Tκ. We say f is delta differentiable on Tκ provided f∆(t) exists for all t ∈ Tκ. The

function f∆ : Tκ → R is called the delta derivative of f on Tκ.
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Figure 2.3. The plot of µ(t) on K exhibits fractal characteristics.

Theorem 2.1. [6] Suppose f : T→ R and t ∈ Tκ.

(i) If f is delta differentiable at t, then f is continuous at t.

(ii) If f is continuous at t and t is right-scattered, then f is delta differentiable

at t and f∆(t) = f(σ(t))−f(t)
µ(t)

.

(iii) If t is right-dense, then f is delta differentiable at t if and only if lims→t
f(t)−f(s)

t−s

exists. In this case, f∆(t) = lims→t
f(t)−f(s)

t−s
.

(iv) If f is delta differentiable at t, then f(σ(t)) = f(t) + µ(t)f∆(t).

Note that f∆ is precisely f ′ from the usual calculus when T = R. On the other

hand, f∆ = ∆f = f(t + 1) − f(t) (i.e. the forward difference operator) on the time

scale T = Z. These are but two very special (and rather simple) examples of time

scales. Moreover, the realms of differential equations and difference equations can
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now be viewed as but special, particular cases of more general dynamic equations on

time scales, i.e. equations involving the delta derivative(s) of some unknown function.

Table 2.1. Basic notions from time scales calculus.

T = R T = Z Any T
(k f)′ = k · f ′ ∆(k f) = k∆f (k f)∆ = k · f∆

(f + g)′ = f ′ + g′ ∆(f + g) = ∆f + ∆g (f + g)∆ = f∆ + g∆

(fg)′ = fg′ + f ′g ∆(fg) = f∆g + ∆f · g(t + 1) (fg)∆ = f · g∆ + f∆ · gσ

(f/g)′ = f ′g−fg′
g2 ∆(f/g) = ∆f ·g−f∆g

g·g(t+1)
(f/g)∆ = f∆g−f ·g∆

g·gσ

Example 2.8. To illustrate this generalization, we show two different instances. First

let T = R. By the definition of the derivative and the fact that every t ∈ Tκ = T is

right-dense,

f∆(t) = lim
s→t

f(t)− f(s)

t− s
= f ′(t).

If T = Z, by the definition we have for every t ∈ Tκ = T,

f∆(t) =
f(σ(t))− f(t)

µ(t)
=

f(t + 1)− f(t)

(t + 1)− t
= f(t + 1)− f(t) = ∆f(t).

We note that throughout the dissertation, f(σ(t)) is denoted as fσ(t) and the

notation that is used for an interval intersected with a time scale is (a, b)∩T = (a, b)T.

2.3 Integration

We now define functions that are integrable on arbitrary time scales T.

Definition 2.6. We say a function f : T → R is called regulated provided its right-

and left-sided limits exist at all right- and left-dense points in T, respectively.

Definition 2.7. A function f : T→ R is called rd-continuous provided it is continuous

at right-dense points in T and its left-sided limits exist (i.e. finite) at left-dense points

in T. The set of rd-continuous functions f : T→ R will be denoted by

Crd = Crd(T) = Crd(T,R).
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It follows naturally that the set of functions f : T→ R whose first n delta derivatives

exist and are rd-continuous on T is denoted by

Cn
rd = Cn

rd(T) = Cn
rd(T,R).

From the previous two definitions we have the following theorem.

Theorem 2.2. Assume f : T→ R.

(i) If f is continuous, then f is rd-continuous.

(ii) If f is rd-continuous, then f is regulated.

(iii) The forward jump operator σ is rd-continuous.

(iv) If f is regulated or rd-continuous, then so is fσ.

(v) Assume f is continuous. If g : T → R is regulated or rd-continuous, then

f ◦ g is also regulated or rd-continuous, respectively.

Definition 2.8. A continuous function f : T → R is pre-differentiable with (region

of differentiation) D, provided D ⊂ Tκ, Tκ\D is countable and contains no right-

scattered elements of T, and f is differentiable at each t ∈ D.

The next theorem guarantees the existence of pre-antiderivatives.

Theorem 2.3. Let f be regulated. Then there exists a function F which is pre-differentiable

with region of differentiation D such that

F∆(t) = f(t) holds for all t ∈ D.

Definition 2.9. Assume f : T → R is a regulated function. Any function F as in

Theorem 2.3 is called a pre-antiderivative of f .

Definition 2.10. The indefinite integral of a regulated function f is defined by
∫

f(t)∆t = F (t) + C,

where C is an arbitrary constant and F is a pre-antiderivative of f .
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Definition 2.11. The Cauchy integral is defined by

∫ b

a

f(t)∆t = F (b)− F (a) for all a, b ∈ T.

Definition 2.12. Suppose that sup(T) = ∞. The improper integral is defined by

∫ ∞

a

f(t)∆t = lim
b→∞

∫ b

a

f(t)∆t for all a ∈ T.

Definition 2.13. A function F : T → R is called an antiderivative of f : T → R

provided

F∆(t) = f(t) holds for all t ∈ Tκ.

2.4 Hilger’s Complex Plane

Definition 2.14. For h > 0, we define the Hilger complex numbers, the Hilger real axis,

the Hilger alternating axis, and the Hilger imaginary circle as

Ch :=

{
z ∈ C : z 6= −1

h

}
,

Rh :=

{
z ∈ C : z ∈ R and z > −1

h

}
,

Ah :=

{
z ∈ C : z ∈ R and z < −1

h

}
,

Ih :=

{
z ∈ C :

∣∣∣∣z +
1

h

∣∣∣∣ =
1

h

}
,

respectively. For h = 0, let C0 := C, R0 := R, A0 := ∅, and I0 := iR.

Definition 2.15. Let h > 0 and z ∈ Ch. The Hilger real part of z is defined by

Reh(z) :=
|zh + 1| − 1

h

and the Hilger imaginary part of z is defined by

Imh(z) :=
Arg(zh + 1)

h
,

where Arg(z) denotes the principal argument of z (i.e., −π < Arg(z) ≤ π).
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Figure 2.4. The Hilger complex plane.

2.5 The Regressive Group

Definition 2.16. The function p : T→ R is regressive if

1 + µ(t)p(t) 6= 0, t ∈ Tκ.

From this point, all regressive and rd-continuous functions p : T→ R will be denoted

as

R = R(T) = R(T,R).

Definition 2.17. The operation ⊕ (read “circle plus”) on R is defined by

(p⊕ q)(t) := p(t) + q(t) + µ(t)p(t)q(t), for all t ∈ Tκ, p, q ∈ R.

The following theorem will prove very useful throughout the paper and is stated

here without proof [6].

Theorem 2.4. (R(T,R),⊕) is an Abelian group.

From this point, we call R = (R(T,R),⊕) the regressive group.

Corollary 2.1. The set of all positively regressive elements of R defined by

R+ = R+(T,R) = {p ∈ R : 1 + µ(t)p(t) > 0, for all t ∈ Tκ}

is a subgroup of R.
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Definition 2.18. The function p : T→ R is uniformly regressive on T if there exists a

positive constant δ such that

0 < δ−1 ≤ |1 + µ(t)p(t)|, t ∈ Tκ.

Definition 2.19. The function ªp is defined by

(ªp)(t) = − p(t)

1 + µ(t)p(t)
, for all t ∈ Tκ, p ∈ R.

Definition 2.20. The operation ª (read “circle minus”) on R is defined by

(pª q)(t) = (p⊕ (ªq))(t), for all t ∈ Tκ, p, q ∈ R.

We remark that if p, q ∈ R, then ªp, ªq, p⊕ q, pª q, q ª p ∈ R.

2.6 The Time Scale Exponential Function

We employ a cylinder transform, defined below, to define the generalized time

scale exponential function for an arbitrary time scale T.

Definition 2.21. For h > 0, let Zh be the strip

Zh := {z ∈ C : −π

h
< Im(z) ≤ π

h
}

and for h = 0, let Z0 := C.

Definition 2.22. For h > 0, the cylinder transformation ξh : Ch → Zh is defined by

ξh(z) =
1

h
Log(1 + zh), (2.1)

where Log is the principal logarithm function. Note that when h = 0, we define

ξ0(z) = z, for all z ∈ C. The inverse cylinder transformation ξ−1
h : Zh → Ch is defined

by

ξ−1
h (z) =

ezh − 1

h
. (2.2)

See Figure 2.5.
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Figure 2.5: The cylinder (2.1) and inverse cylinder (2.2) transformations map the familiar
stability region in the continuous case to the interior of the Hilger circle in the general time
scale case.

Now we define the generalized time scale exponential function. We list some

properties in the following lemma and refer the reader to [6] for a complete summary.

Definition 2.23. If p ∈ R, then we define the generalized time scale exponential func-

tion by

ep(t, s) = exp

(∫ t

s

ξµ(τ)(p(τ))∆τ

)
, for all s, t ∈ T.

Lemma 2.1. [6] Some properties of the generalized exponential are the following:

(i) If p ∈ R, then semigroup property ep(t, r)ep(r, s) = ep(t, s) is satisfied for all

r, s, t ∈ T.

(ii) ep(σ(t), s) = (1 + µ(t)p(t))ep(t, s).

(iii) If p ∈ R+, then ep(t, t0) > 0 for all t ∈ T.

(iv) If 1 + µ(t)p(t) < 0 for some t ∈ T, then ep(t, t0)ep(σ(t), t0) < 0.

(v) If T = R, then ep(t, s) = e
R t

s p(τ)dτ . Moreover, if p is constant, then ep(t, s) =

ep(t−s).

(vi) If T = Z, then ep(t, s) =
∏t−1

τ=s(1 + p(τ)). Moreover, if T = hZ, with h > 0

and p is constant, then ep(t, s) = (1 + hp)
(t−s)

h .
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Definition 2.24. If p ∈ R and f : T→ R is rd-continuous, then the dynamic equation

y∆(t) = p(t)y(t) + f(t) (2.3)

is called regressive.

Theorem 2.5 (Variation of Constants). If (2.3) is regressive, t0 is fixed in T and

y(t0) = y0 ∈ R, then the unique solution to the first order dynamic equation on T

y∆(t) = p(t)y(t) + f(t), y(t0) = y0,

exists and is given by

y(t) = y0ep(t, t0) +

∫ t

t0

ep(t, σ(τ))f(τ)∆τ.

2.7 Regressive Matrices

We now introduce the concept of a regressive matrix, “circle plus” addition,

“circle minus” substraction, and the time scale matrix exponential.

Definition 2.25. Let A be an m×n-matrix-valued function on a time scale T. We say

that A is rd-continuous on T if each entry of A is rd-continuous, and the class of all

such rd-continuous m× n-matrix-valued functions on T is denoted by

Crd = Crd(T) = Crd(T,Rm×n).

Definition 2.26. An n×n-matrix-valued function A on a time scale T is called regres-

sive (with respect to T) provided

I + µ(t)A(t) is invertible for all t ∈ Tκ,

and the class of all such regressive and rd-continuous functions is denoted by

R = R(T) = R(T,Rn×n).

We say the n× 1-vector-valued IVP

y∆(t) = A(t)y(t) + f(t), y(t0) = y0 (2.4)
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is regressive provided A ∈ R and f : T → Rn is a rd-continuous vector-valued

function.

The next lemma provides a fact about the relationship between the n × n-

matrix-valued function A and the eigenvalues λi(t) of A(t).

Lemma 2.2. The n×n-matrix-valued function A is regressive if and only if the eigen-

values of λi(t) of A(t) are regressive for all 1 ≤ i ≤ n.

Definition 2.27. Assume that A and B are regressive n × n-matrix-valued functions

on T. Then we define the following operations

(A⊕B)(t) = A(t) + B(t) + µ(t)A(t)B(t),

(ªA)(t) = − [I + µ(t)A(t)]−1 A(t) = −A(t) [I + µ(t)A(t)]−1 ,

and

(AªB)(t) = (A⊕ (ªB))(t),

for all t ∈ Tκ.

Theorem 2.6. (R(T,Rn×n),⊕) is a group.

From this theorem, we know that whenever A, B ∈ R(T,Rn×n), then A⊕B ∈
R(T,Rn×n).

We now state some properties of the regressive matrix-valued functions A and

B. We let A∗ denote the conjugate transpose of A. If A ∈ Rm×n, then A∗ = AT .

Lemma 2.3. Suppose that A and B are regressive matrix-valued functions taking on

complex values. Then we have the following:

(i) A∗ is regressive;

(ii) A∗ ⊕B∗ = (A⊕B)∗.

Now the generalized matrix exponential function from [6] is presented.
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Definition 2.28. Let t0 ∈ T and assume that A ∈ R is an n×n-matrix-valued function.

The unique matrix-valued solution to the IVP

Y ∆(t) = A(t)Y (t), Y (t0) = In, (2.5)

where In is the n × n-identity matrix, is called the time scale matrix exponential

function (at t0), and it is denoted by eA(t, t0), where the subscript A may be a time

varying or a constant matrix. It can also be called the transition matrix for the

system (2.5).

In this dissertation, we denote the solution to (2.5) as ΦA(t, t0) when A(t) is time

varying and note that ΦA(t, t0) ≡ eA(t, t0) only when A(t) ≡ A is a constant matrix.

Also, if A(t) is a function on T and the time scale matrix exponential function is a

function on some other time scale S, then A(t) is constant with respect to eA(t)(τ, s),

for all τ, s ∈ S and t ∈ T. We state the following lemma which lists some properties

of the transition matrix ΦA(t, t0) and a theorem that guarantees a unique solution to

the regressive n× 1-vector-valued dynamic IVP (2.4) that is used throughout.

Lemma 2.4. Suppose A ∈ R are matrix-valued functions on T. Then

(i) The semigroup property ΦA(t, r)ΦA(r, s) = ΦA(t, s) is satisfied for all r, s, t ∈
T.

(ii) ΦA(σ(t), s) = (I + µ(t)A(t))ΦA(t, s).

(iii) If T = R and A is constant, then ΦA(t, s) = eA(t, s) = eA(t−s).

(iv) If T = hZ, with h > 0, and A is constant, then ΦA(t, s) = eA(t, s) =

(I + hA)
(t−s)

h .

Theorem 2.7 (Variation of Constants). Let t0 ∈ T and y(t0) = y0 ∈ Rn. Then the

regressive IVP (2.4) has a unique solution y : T→ Rn given by

y(t) = ΦA(t, t0)y0 +

∫ t

t0

ΦA(t, σ(τ))f(τ)∆τ.



CHAPTER THREE

General Definitions and Preliminary Stability Results

3.1 Matrix Norms and Definiteness

We start by introducing some notation that will be employed in the sequel.

Definition 3.1. The Euclidean norm of an n × 1 vector x(t) is defined to be a real-

valued function of t and is denoted by

||x(t)|| =
√

xT (t)x(t).

Definition 3.2. The induced norm of an m× n matrix A is defined to be

||A|| = max
||x||=1

||Ax||.

We remark that the norm of A induced by the Euclidean norm above is equal

to the nonnegative square root of the absolute value of the largest eigenvalue of the

symmetric matrix AT A. Thus, we define this norm next.

Definition 3.3. The spectral norm of an m× n matrix A is defined to be

||A|| =
[

max
||x||=1

xT AT Ax

] 1
2

.

This will be the matrix norm that is used in the sequel and will be denoted by || · ||.

Definition 3.4. A symmetric matrix M is defined to be positive semidefinite if for all

n× 1 vectors x

xT Mx ≥ 0

and is positive definite if

xT Mx ≥ 0, with equality only when x = 0.

Negative semidefiniteness and definiteness are defined in terms of positive semidefi-

niteness and definiteness of −M .

24
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3.2 Stability Definitions

We now define the concepts of uniform stability and uniform exponential sta-

bility. These two concepts involve the boundedness of the solutions of the regressive

time varying linear dynamic equation

x∆(t) = A(t)x(t), x(t0) = x0, t0 ∈ T. (3.1)

Definition 3.5. The time varying linear dynamic equation (3.1) is uniformly stable if

there exists a finite constant γ > 0 such that for any t0 and x(t0), the corresponding

solution satisfies

||x(t)|| ≤ γ||x(t0)||, t ≥ t0.

For the next definition, we define a stability property that not only concerns

the boundedness of a solutions to (3.1), but also the asymptotic characteristics of the

solutions as well. If the solutions to (3.1) possess the following stability property, then

the solutions approach zero exponentially as t → ∞ (i.e. the norms of the solutions

are bounded above by a decaying exponential function).

Definition 3.6. The time varying linear dynamic equation (3.1) is called uniformly

exponentially stable if there exist constants γ, λ > 0 with −λ ∈ R+ such that for any

t0 and x(t0), the corresponding solution satisfies

||x(t)|| ≤ ||x(t0)||γe−λ(t, t0), t ≥ t0.

It is obvious by inspection of the previous definitions that we must have γ ≥ 1.

By using the word uniform, it is implied that the choice of γ does not depend on the

initial time t0.

The last stability definition given uses a uniformity condition to conclude ex-

ponential stability.

Definition 3.7. The linear state equation (3.1) is defined to be uniformly asymptotically

stable if it is uniformly stable and given any δ > 0, there exists a T > 0 so that for
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any t0 and x(t0), the corresponding solution x(t) satisfies

||x(t)|| ≤ δ||x(t0)||, t ≥ t0 + T. (3.2)

It is noted that the time T that must pass before the norm of the solution

satisfies (3.2) and the constant δ > 0 is independent of the initial time t0.

3.3 Stability Characterizations

We now state and prove four theorems, the first three of which characterize

uniform stability and uniform exponential stability in terms of the transition matrix

for the system (3.1). The forth theorem illustrates the relationship between uniform

asymptotic stability and uniform exponential stability.

Theorem 3.1. The time varying linear dynamic equation (3.1) is uniformly stable if

and only if there exists a γ > 0 such that

||ΦA(t, t0)|| ≤ γ

for all t ≥ t0 with t, t0 ∈ T.

Proof. Suppose that (3.1) is uniformly stable. Then there exists a γ > 0 such that

for any t0, x(t0), the solutions satisfy

||x(t)|| ≤ γ||x(t0)||, t ≥ t0.

Given any t0 and ta ≥ t0, let xa be a vector such that

||xa|| = 1, ||ΦA(ta, t0)xa|| = ||ΦA(ta, t0)|| ||xa|| = ||ΦA(ta, t0)||

So the initial state x(t0) = xa gives a solution of (3.1) that at time ta satisfies

||x(ta)|| = ||ΦA(ta, t0)xa|| = ||ΦA(ta, t0)|| ||xa|| ≤ γ||xa||.

Since ||xa|| = 1, we see that ||ΦA(ta, t0)|| ≤ γ. Since xa can be selected for any t0 and

ta ≥ t0, we see that ||ΦA(t, t0)|| ≤ γ for all t, t0 ∈ T.
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Now suppose that there exists a γ such that ||ΦA(t, t0)|| ≤ γ for all t, t0 ∈ T.

For any t0 and x(t0) = x0, the solution of (3.1) satisfies

||x(t)|| = ||ΦA(t, t0)x0|| ≤ ||ΦA(t, t0)|| ||x0|| ≤ γ||x0||, t ≥ t0.

Thus, uniform stability of (3.1) is established.

Theorem 3.2. The time varying linear dynamic equation (3.1) is uniformly exponen-

tially stable if and only if there exist λ, γ > 0 with −λ ∈ R+ such that

||ΦA(t, t0)|| ≤ γe−λ(t, t0)

for all t ≥ t0 with t, t0 ∈ T.

Proof. First suppose that (3.1) is exponentially stable. Then there exist γ, λ > 0

with −λ ∈ R+ such that for any t0 and x0 = x(t0), the solution of (3.1) satisfies

||x(t)|| = ||x0||γe−λ(t, t0), t ≥ t0.

So for any t0 and ta ≥ t0, let xa be a vector such that

||xa|| = 1, ||ΦA(ta, t0)xa|| = ||ΦA(ta, t0)|| ||xa|| = ||ΦA(ta, t0)||.

Then the initial state x(t0) = xa gives a solution of (3.1) that at time ta satisfies

||x(ta)|| = ||ΦA(ta, t0)xa|| = ||ΦA(ta, t0)|| ||xa|| ≤ ||xa||γe−λ(t, t0).

Since ||xa|| = 1 and −λ ∈ R+, we have ||ΦA(t, t0)|| ≤ γe−λ(t, t0). Since xa can be

selected for any t0 and ta ≥ t0, we see that ||ΦA(t, t0)|| ≤ γe−λ(t, t0) for all t, t0 ∈ T.

Now suppose there exist γ, λ > 0 with −λ ∈ R+ such that ||ΦA(t, t0)|| ≤
γe−λ(t, t0) for all t, t0 ∈ T. For any t0 and x(t0) = x0, the solution of (3.1) satisfies

||x(t)|| ≤ ||ΦA(t, t0)x0|| ≤ ||ΦA(t, t0)|| ||x0|| ≤ ||x0||γe−λ(t, t0), t ≥ t0,

and thus uniform exponential stability is attained.
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Theorem 3.3. Suppose there exists a constant α such that for all t ∈ T, ||A(t)|| ≤ α.

Then the linear state equation (3.1) is uniformly exponentially stable if and only if

there exists a constant β such that

∫ t

τ

||ΦA(t, σ(s))||∆s ≤ β (3.3)

for all t, τ ∈ T with t ≥ σ(τ).

Proof. Suppose that the state equation (3.1) is uniformly exponentially stable. By

Theorem 3.2, there exist γ, λ > 0 with −λ ∈ R+ so that

||ΦA(t, τ)|| ≤ γe−λ(t, τ)

for all t, τ ∈ T with t ≥ τ . So we now see that by a result in [6, Thm. 2.39],

∫ t

τ

||ΦA(t, σ(s))||∆s ≤
∫ t

τ

γe−λ(t, σ(s))∆s

=
γ

λ
[e−λ(t, t)− e−λ(t, τ)]

=
γ

λ
[1− e−λ(t, τ)]

≤ γ

λ
,

for all t ≥ σ(τ). Thus, we have established (3.3) with β = γ
λ
.

Now suppose that (3.3) holds. We see that we can represent the state transition

matrix as

ΦA(t, τ) = I −
∫ t

τ

[ΦA(t, s)]∆s∆s = I +

∫ t

τ

ΦA(t, σ(s))A(s)∆s,

so that, with ||A(t)|| ≤ α,

||ΦA(t, τ)|| ≤ 1 +

∫ t

τ

||ΦA(t, σ(s))|| ||A(s)||∆s ≤ 1 + αβ,

for all t, τ ∈ T with t ≥ σ(τ).
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To complete the proof,

||ΦA(t, τ)||(t− τ) =

∫ t

τ

||ΦA(t, τ)||∆s

≤
∫ t

τ

||ΦA(t, σ(s))|| ||ΦA(σ(s), τ)||∆s

≤ β(1 + αβ), (3.4)

for all t ≥ σ(τ).

Now, choosing T with T ≥ 2β(1 + αβ) and t = τ + T ∈ T, we obtain

||ΦA(t, τ)|| ≤ 1

2
, t, τ ∈ T. (3.5)

Using the bound from equation (3.4) and (3.5), we have the following set of

inequalities on intervals in the time scale of the form [τ + kT, τ + (k + 1)T )T, with

arbitrary τ :

||ΦA(t, τ)|| ≤ 1 + αβ, t ∈ [τ, τ + T )T

||ΦA(t, τ)|| = ||ΦA(t, τ + T )ΦA(τ + T, τ)||

≤ ||ΦA(t, τ + T )|| ||ΦA(τ + T, τ)||

≤ 1 + αβ

2
, t ∈ [τ + T, τ + 2T )T

||ΦA(t, τ)|| = ||ΦA(t, τ + 2T )ΦA(τ + 2T, τ + T )ΦA(τ + T, τ)||

≤ ||ΦA(t, τ + 2T )|| ||ΦA(τ + 2T, τ + T )|| ||ΦA(τ + T, τ)||

≤ 1 + αβ

22
, t ∈ [τ + 2T, τ + 3T )T .

In general, for any τ ∈ T, we have

||ΦA(t, τ)|| ≤ 1 + αβ

2k
, t ∈ [τ + kT, τ + (k + 1)T )T .

We now choose the bounds to obtain a decaying exponential bound. Let γ =

2(1 + αβ) and define the positive (possibly piecewise defined) function λ(t) (with



30

−λ(t) ∈ R+) as the solution to e−λ(t, τ) ≥ e−λ(τ + (k + 1)T, τ) = 1
2k+1 , for t ∈

[τ + kT, τ + (k + 1)T )T with k ∈ N0. Then for all t, τ ∈ T with t ≥ τ , we obtain the

decaying exponential bound

||ΦA(t, τ)|| ≤ γe−λ(t, τ).

Therefore, by Theorem 3.2, we have uniform exponential stability.

For example, when T = R, the solution to

e−λ(t−τ) ≥ e−λ(τ+(k+1)T−τ) = e−λ((k+1)T ) =
1

2k+1

with k ∈ N0 and t ∈ [τ + kT, τ + (k + 1)T )T is λ = − 1
T

ln(1
2
).

When T = Z, the solution to

(1− λ)t−τ ≥ (1− λ)τ+(k+1)T−τ = (1− λ)(k+1)T =
1

2k+1

with k ∈ N0 and t ∈ [τ + kT, τ + (k + 1)T )T is λ = 1− (
1
2

)− 1
T , and −λ ∈ R+.

Theorem 3.4. The linear state equation (3.1) is uniformly exponentially stable if and

only if it is uniformly asymptotically stable.

Proof. Suppose that the system (3.1) is uniformly exponentially stable. This implies

that there exist constants γ, λ > 0 with −λ ∈ R+ so that ||ΦA(t, τ)|| ≤ γe−λ(t, τ)

for t ≥ τ . Clearly, this implies uniform stability. Now, given a δ > 0, we choose a

sufficiently large positive constant T > 0 such that t0 +T ∈ T and e−λ(t0 +T, t0) ≤ δ
γ
.

Then for any t0 and x0, and t ≥ T + t0 with t ∈ T,

||x(t)|| = ||ΦA(t, t0)x0||

≤ ||ΦA(t, t0)|| ||x0||

≤ γe−λ(t, t0)||x0||

≤ γe−λ(t0 + T, t0)||x0||

≤ δ||x0||, t ≥ t0 + T.

Thus, (3.1) is uniformly asymptotically stable.
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Now suppose the converse. By definition of uniform asymptotic stability, (3.1)

is uniformly stable. Thus, there exists a constant γ > 0 so that

||ΦA(t, τ)|| ≤ γ, for all t ≥ τ. (3.6)

Choosing δ = 1
2
, let T be a positive constant so that t = t0 + T ∈ T and (3.2) is

satisfied. Given a t0 and letting xa be so that ||xa|| = 1, we have

||ΦA(t0 + T, t0)xa|| = ||ΦA(t0 + T, t0)||.

When x0 = xa, the solution x(t) of (3.1) satisfies

||x(t)|| = ||x(t0 + T )|| = ||ΦA(t0 + T, t0)xa|| = ||ΦA(t0 + T, t0)|| ||xa|| ≤ 1

2
||xa||.

From this, we obtain

||ΦA(t0 + T, t0)|| ≤ 1

2
. (3.7)

It can be seen that for any t0 there exists an xa as claimed. Therefore, the above

inequality holds for any t0. Thus, by using (3.6) and (3.7) exactly as in Theorem 3.3,

uniform exponential stability is obtained.



CHAPTER FOUR

Lyapunov Stability Criteria for Linear Dynamic Systems

4.1 Stability of the Time Varying Linear Dynamic System

In this section, we investigate the stability of the regressive time varying linear

dynamic system of the form

x∆(t) = A(t)x(t), x(t0) = x0, t0 ∈ T. (4.1)

We are seeking to assess the stability of the unforced, dissipative system by observing

the system’s total energy as the state of the system evolves in time. If the total

energy of the system decreases as the state evolves, then the state vector approaches

a constant value (equilibrium point) corresponding to zero energy as time increases.

The stability of the system involves the growth characteristics of solutions of the

state equation (4.1), and these properties can be measured by a suitable (energy-like)

scalar function of the state vector. In the following two subsections, we discuss the

boundedness properties and asymptotic behavior as t →∞ of solutions of the system

(4.1). Of course, the problem at hand is obtaining a proper scalar function.

We assume that our time scale T is unbounded above. To start, we consider

conditions that imply all solutions of the linear state equation (4.1) are such that

||x(t)||2 → 0 as t → ∞. For any solution of (4.1), the delta derivative of the scalar

function

||x(t)||2 = xT (t)x(t)

with respect to t is:

[||x(t)||2]∆t
= xT∆

(t)x(t) + xT σ

(t)x∆(t)

= xT (t)AT (t)x(t) + xT (t)(I + µ(t)AT (t))A(t)x(t)

= xT (t)[AT (t) + A(t) + µ(t)AT (t)A(t)]x(t).

32
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So if the quadratic form we obtain is negative definite, i.e. AT (t)+A(t)+µ(t)AT (t)A(t)

is negative definite at each t, then ||x(t)||2 will decrease monotonically as t increases.

We later show that if there exists a ν > 0 so that AT (t)+A(t)+µ(t)AT (t)A(t) ≤ −νI

for all t, then ||x(t)||2 → 0 as t → ∞. To formalize our discussion, we define time-

dependent quadratic forms that are useful for analyzing stability. We will refer to

these quadratic forms as unified time scale quadratic Lyapunov functions. For a

symmetric matrix Q(t) ∈ C1
rd(T,Rn×n) we write the general quadratic Lyapunov

function as xT (t)Q(t)x(t). If x(t) is a solution to (4.1), then interest lies in the

behavior of the (scalar) quantity xT (t)Q(t)x(t) for t ≥ t0. With this we now define

one of the main ideas of this dissertation.

Definition 4.1. Let Q(t) be a symmetric matrix such that Q(t) ∈ C1
rd(T,Rn×n). A

unified time scale quadratic Lyapunov function is given by

xT (t)Q(t)x(t), t ≥ t0, (4.2)

with delta derivative

[xT (t)Q(t)x(t)]∆t = xT (t)[AT (t)Q(t)

+ (I + µ(t)AT (t))(Q∆(t) + Q(t)A(t) + µ(t)Q∆(t)A(t))]x(t)

= xT (t)[AT (t)Q(t) + Q(t)A(t) + µ(t)AT (t)Q(t)A(t)

+ (I + µ(t)AT (t))Q∆(t)(I + µ(t)A(t))]x(t).

The matrix dynamic equation that is obtained by differentiating (4.2) with

respect to t is given by

AT (t)Q(t) + Q(t)A(t) + µ(t)AT (t)Q(t)A(t)

+ (I + µ(t)AT (t))Q∆(t)(I + µ(t)A(t)) = −M, M = MT . (4.3)

One can see that it merges with the familiar continuous matrix differential equation

(T = R) and discrete (T = Z) difference (recursive) equation obtained from the

respective quadratic Lyapunov functions in R and Z.
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For the continuous case T = R, we observe that µ(t) ≡ 0. Thus, from (4.1) we

now have the continuous system

ẋ(t) = A(t)x(t), x(t0) = x0. (4.4)

The quadratic Lyapunov function that emerges from (4.4) is

d

dt
[xT (t)Q(t)x(t)] = xT (t)[AT (t)Q(t) + Q(t)A(t) + Q̇(t)]x(t),

where

AT (t)Q(t) + Q(t)A(t) + Q̇(t) = −M, M = MT ,

is the familiar matrix differential equation [7, 13, 30, 41, 42] derived from the contin-

uous system (4.4).

For the discrete case T = Z, we note that systems of difference equations in Z

are traditionally written in recursive form

x(t + 1) = AR(t)x(t), x(t0) = x0, (4.5)

while the difference form is written

x∆(t) = ∆x(t) = x(t + 1)− x(t) = A(t)x(t), x(t0) = x0. (4.6)

Thus, changing from difference form to recursion just requires a unit shift on the

matrix A(t), that is,

x(t + 1) = (I + A(t))x(t) = AR(t)x(t)

where AR = (I + A).

Now taking the forward difference of the unified time scale quadratic Lyapunov

function (4.2) with respect to (4.6), and noting that µ(t) ≡ 1 when in Z, we obtain
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xT (t)[AT (t)Q(t) + Q(t)A(t) + AT (t)Q(t)A(t)

+ (I + AT (t))∆Q(t)(I + A(t))]x(t)

= xT (t)[(AT
R(t)− I)Q(t) + Q(t)(AR(t)− I) + (AT

R(t)− I)Q(t)(AR(t)− I)

+ AT
R(t)∆Q(t)AR(t)]x(t)

= xT (t)[AT
R(t)Q(t)−Q(t) + Q(t)AR(t)−Q(t) + AT

R(t)Q(t)AR(t)

− AT
R(t)Q(t)−Q(t)AR(t) + Q(t) + AT

R(t)∆Q(t)AR(t)]x(t)

= xT (t)[−Q(t) + AT
R(t)Q(t)AR(t) + AT

R(t)∆Q(t)AR(t)]x(t)

= xT (t)[−Q(t) + AT
R(t)Q(t)AR(t) + AT

R(t)(Q(t + 1)−Q(t))AR(t)]x(t)

= xT (t)[AT
R(t)Q(t + 1)AR(t)−Q(t)]x(t),

where

AT
R(t)Q(t + 1)AR(t)−Q(t) = −M, M = MT ,

is the well known discrete matrix recursion equation [14, 31, 42] for the recursive

system (4.5).

This shows that the unified time scale matrix dynamic equation merges into the

continuous and discrete cases easily because of the time-varying graininess µ(t). This

unified time scale matrix dynamic equation not only unifies the two special cases of

continuous and discrete time, it also extends these notions to arbitrary time scales,

and as such plays a crucial role in our analysis.

4.2 Uniform Stability

In this section, we introduce criteria for uniform stability of the system (4.1).

The criteria introduced in Theorem 4.1 is a generalization of the Lyapunov criteria

for uniform stability of discrete and continuous linear systems that can be found

in the famous papers by Kalman and Bertram [30, 31]. Uniform stability involves

the boundedness of all solutions of the system (4.1) and in the following theorem
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we derive sufficient conditions for uniform stability of the system. The strategy is

to state requirements on the matrix Q(t) so that the corresponding quadratic form

yields uniform stability of the system.

Theorem 4.1. The time varying linear dynamic system (4.1) is uniformly stable if for

all t ∈ T, there exists a symmetric matrix Q(t) ∈ C1
rd(T,Rn×n) such that

(i) ηI ≤ Q(t) ≤ ρI

(ii) AT (t)Q(t) + (I + µ(t)AT (t))(Q∆(t) + Q(t)A(t) + µ(t)Q∆(t)A(t)) ≤ 0,

where η, ρ ∈ R+.

Proof. For any t0 and x(t0) = x0, by (ii),

xT (t)Q(t)x(t)− xT (t0)Q(t0)x(t0) =

∫ t

t0

[xT (s)Q(s)x(s)]∆s∆s ≤ 0,

for t ≥ t0. Using (i),

η||x(t)||2 ≤ xT (t)Q(t)x(t) ≤ xT (t0)Q(t0)x(t0) ≤ ρ||x(t0)||2,

which implies

||x(t)|| ≤
√

ρ

η
||x(t0)||.

Since this last statement holds for all t0 and x(t0) = x0, equation (4.1) is uniformly

stable.

To illustrate this theorem, we present an example.

Example 4.1. Consider the time varying linear dynamic system

x∆(t) =



−2 1

−1 −a(t)


 x(t), x(t0) = x0,

where a(t) ∈ Crd(T,R) for all t ∈ T. Choose Q(t) = I, so that xT (t)Q(t)x(t) =

xT (t)x(t) = ||x(t)||2. In Theorem 4.1, (i) is satisfied when η = ρ = 1. To satisfy the

second requirement, we see for Q(t) = I, Q∆(t) = 0 so

AT (t)Q(t) + (I + µ(t)AT (t))(Q∆(t) + Q(t)A(t) + µ(t)Q∆(t)A(t)) ≤ 0
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becomes

AT (t) + A(t) + µ(t)AT (t)A(t) ≤ 0.

Now

A(t) =



−2 1

−1 −a(t)


 , AT (t) =



−2 −1

1 −a(t)


 ,

and

µ(t)AT (t)A(t) = µ(t)




5 a(t)− 2

a(t)− 2 a(t)2 + 1


 ,

so

AT (t) + A(t) + µ(t)AT (t)A(t) =




5µ(t)− 4 (a(t)− 2)µ(t)

(a(t)− 2)µ(t) (a(t)2 + 1)µ(t)− 2a(t)


 .

For any 2× 2 matrix

M =




m11 m12

m21 m22




to be negative semidefinite, we need −m11,−m22 ≥ 0 and det(M) ≥ 0. For our

matrix

A∗(t) := AT (t) + A(t) + µ(t)AT (t)A(t),

we need

− a∗11 = 4− 5µ(t) ≥ 0 which implies 0 ≤ µ(t) ≤ 4

5
,

− a∗22 = −((a(t)2 + 1)µ(t)− 2a(t)) ≥ 0,

and

det(A∗(t)) = 4µ(t)2a(t)2 − 4µ(t)a(t)2 + 4µ(t)2a(t)

− 10µ(t)a(t) + 8a(t) + µ(t)2 − 4µ(t) ≥ 0.

It is can be confirmed that for each 0 ≤ µ(t) ≤ 4
5
, the interval in which −a∗22 ≥ 0

always contains the interval in which det(A∗(t)) ≥ 0. Thus, we only need to concern
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ourselves with the latter inequality. If µ(t) = 4
5
, the only possible value that the

function a(t) may be is 2. If we let µ(t) = 1
2
, we see that a window emerges for the

allowable values of the function a(t) : 1
2
≤ a(t) ≤ 7

2
. Letting µ(t) = 2

5
, we see that

another window develops for the allowable values of the function a(t) : 1
3
≤ a(t) ≤ 9

2
.

It is quite interesting to note that as µ(t) → 0, the window opens up to infinite length,

bounded below by 0. Therefore, when T = R, the only requirement for a(t) is that it

is nonnegative for all t ∈ T.

4.3 Uniform Exponential Stability

We now introduce sufficient criteria for uniform exponential stability of the

system (4.1). The criteria introduced in Theorem 4.2 is again a generalization of

the Lyapunov criteria for uniform exponential stability of discrete and continuous

linear systems, which can be found in the companion papers of Kalman and Bertram

[30, 31], as well as the classic text by Hahn [22]. There is a slight, but very powerful

variation from uniform stability to uniform exponential stability. By requiring Q(t) ∈
C1

rd(T,Rn×n) to be symmetric, positive definite, and bounded above and below by

positive definite matrices, along with a strictly negative definite delta derivative, i.e.

[
xT (t)Q(t)x(t)

]∆ ≤ −ε xT (t)x(t),

for some ε > 0, we will show that all solutions of (4.1) are bounded above by a

decaying exponential and go to zero as t → ∞. Uniform exponential stability does

imply that the system (4.1) is uniformly stable, but the converse is not true.

Theorem 4.2. The time varying linear dynamic system (4.1) is uniformly exponentially

stable if there exists a symmetric matrix Q(t) ∈ C1
rd(T,Rn×n) such that for all t ∈ T

(i) ηI ≤ Q(t) ≤ ρI

(ii) AT (t)Q(t) + (I + µ(t)AT (t))(Q∆(t) + Q(t)A(t) + µ(t)Q∆(t)A(t)) ≤ −νI,

where η, ρ, ν ∈ R+ and −ν
ρ
∈ R+.
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Proof. For any initial condition t0 and x(t0) = x0 with corresponding solution x(t) of

(4.1), we see that for all t ≥ t0, (ii) yields

[xT (t)Q(t)x(t)]∆ ≤ −ν||x(t)||2.

Also, for all t ≥ t0, (i) implies

xT (t)Q(t)x(t) ≤ ρ||x(t)||2.

Thus

[xT (t)Q(t)x(t)]∆ ≤ −ν

ρ
xT (t)Q(t)x(t),

for all t ≥ t0. Since −ν
ρ
∈ R+, we can employ the time scale version of Gronwall’s

inequality [6] to obtain

xT (t)Q(t)x(t) ≤ xT (t0)Q(t0)x(t0)e−ν
ρ

(t, t0), t ≥ t0. (4.7)

By (i), ηI ≤ Q(t) which is equivalent to η||x(t)||2 ≤ xT (t)Q(t)x(t) and division by η

along with (4.7) yields

||x(t)||2 ≤ 1

η
xT (t)Q(t)x(t) ≤ 1

η
xT (t0)Q(t0)x(t0)e−ν

ρ
(t, t0), t ≥ t0.

Since xT (t0)Q(t0)x(t0) ≤ ρ||x(t0)||2, this implies

||x(t)||2 ≤ ρ

η
||x(t0)||2e−ν

ρ
(t, t0),

which yields

||x(t)|| ≤ ||x(t0)||
√

ρ

η
e−ν

ρ
(t, t0), t ≥ t0.

This holds for arbitrary t0 and x(t0). Thus, uniform exponential stability is obtained.

We present another example to show the difference between uniform stability

and uniform exponential stability.
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Example 4.2. Consider again the time varying linear dynamic system

x∆(t) =



−2 1

−1 −a(t)


 x(t), x(t0) = x0,

where we now let a(t) = sin(t) + 2 which is obviously in Crd(T,R) for all t ∈ T. We

note that sin(t) is the usual sine function that gives the sine value of each point in T

and it is not the time scale function sin1(t, 0).

Again, choose Q(t) = I, so that xT (t)Q(t)x(t) = xT (t)x(t) = ||x(t)||2. In

Theorem 4.1, (i) is satisfied when η = ρ = 1. To satisfy the second requirement, we

see Q(t) = I, so Q∆(t) = 0 and thus

AT (t)Q(t) + (I + µ(t)AT (t))(Q∆(t) + Q(t)A(t) + µ(t)Q∆(t)A(t)) ≤ −νI

becomes

AT (t) + A(t) + µ(t)AT (t)A(t) ≤ −νI.

For any 2× 2 matrix

M =




m11 m12

m21 m22




to be negative definite, we need −m11 > 0 and det(M) > 0. For our matrix

A∗(t) := AT (t) + A(t) + µ(t)AT (t)A(t),

we need −a∗11 = 4− 5µ(t) > 0 which implies that 0 ≤ µ(t) < 4
5

and

det(A∗(t)) = 4 sin2(t)µ(t)2 + 20 sin(t)µ(t)2 + 25µ(t)2

− 4 sin2(t)µ(t)− 26 sin(t)µ(t)− 40µ(t) + 8 sin(t) + 16 > 0.

We note that det(A∗(t)) > 0 for all t ∈ T as long as 0 ≤ µ(t) < 1
2
.

For instance, letting T = P.6,.4 =
⋃∞

k=0 [k, k + .6], in this time scale

µ(t) =





0, if t ∈ ⋃∞
k=0 [k, k + .6) ,

.4, if t ∈ ⋃∞
k=0{k + .6}.
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Here, µ(t) < 1
2

for all t ∈ T. From the previous example, we see that the allowable

values are 1
2

< a(t) < 7
2
, which is satisfied for all t ∈ T. For any t, the eigenvalues

of the matrix A∗(t) have a maximum value less than −1
2

when µ(t) < 1
2
. As µ(t)

decreases to 0, the maximum value decreases. Therefore, the maximum of all of the

eigenvalues of the matrix A∗(t) is always less than −1
2
. So A∗(t) is negative definite.

Thus, we can set ν = 1
2
. Checking that −ν

ρ
= −1

2
∈ R+, we now know that the norm

of any solution x(t) with initial value x(t0) is bounded above by the always positive

decaying time scale exponential function ||x(t0)||
√

e− 1
2
(t, t0). By letting Q(t) = I,

the matrix A∗(t) meets the criteria (i), (ii) in Theorem (4.2). Thus, the system above

is uniformly exponentially stable.

4.4 Finding the Matrix Q(t)

First, we give a closed form for the unique, symmetric, and positive definite

(when M is positive definite) solution matrix to the time scale Lyapunov matrix

equation

AT (t)Q(t) + Q(t)A(t) + µ(t)AT (t)Q(t)A(t) = −M, M = MT . (4.8)

We note that the time scale Lyapunov matrix equation is the unification (with

B(t) ≡ AT (t)) of the Sylvester matrix equation [5]

XA(t) + B(t)X = −M, M = MT ,

for the case T = R, and the Stein equation

B(t)XA(t)−X = −M, M = MT ,

for the case T = Z. The Stein matrix equation above is written assuming that one is

using recursive form. It can easily be transformed into the equivalent difference form

XA(t) + B(t)X + B(t)XA(t) = −M, M = MT .
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To prove that the matrix Q(t) is a solution to the time scale Lyapunov matrix

equation (4.8), we first state the following theorem and corollary that can be found

in [6].

Theorem 4.3. Suppose A ∈ R(T,Rn×n) and C ∈ Rn×n is differentiable. If C is a

solution of the matrix dynamic equation

C∆ = A(τ)C − CσA(τ)

then

C(τ)eA(τ, s) = eA(τ, s)C(s).

Corollary 4.1. Suppose A ∈ R and C is a constant matrix. If C commutes with A(t),

then C commutes with eA(t). In particular, if A(t) is constant matrix with respect to

eA(t), then A(t) commutes with eA(t).

Now we present one of the main results of the dissertation.

Theorem 4.4 (Closed Form of the Matrix Q(t)). If the n × n matrix A(t) has all

eigenvalues in the corresponding Hilger circle for every t ≥ t0, then for each t ∈ T,

there exists some time scale S such that integration over I := [0,∞)S yields a unique

solution to (4.8) given by

Q(t) =

∫

I

eAT (t)(s, 0)MeA(t)(s, 0)∆s. (4.9)

Moreover, if M is positive definite, then Q(t) is positive definite for all t ≥ t0.

Proof. First, we fix an arbitrary t ∈ T. Since all eigenvalues of A(t) are in the

corresponding Hilger circle, [40] shows (4.9) converges, so that Q(t) is well defined.

We now show for each fixed t ∈ T, Q(t) is a solution of (4.8).

Case I: µ(t) > 0. Since µ(t) is a positive number, we define the time scale

S = µ(t)N0. So for each s ∈ S, we have that µ(s) ≡ µ(t); in other words, for
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each fixed t ∈ T, S has constant graininess. Substituting (4.9) and integrating over

I = [0,∞)S we obtain

AT (t)Q(t) + Q(t)A(t) + µ(t)AT (t)Q(t)A(t)

=

∫

I

AT (t)eAT (t)(s, 0)MeA(t)(s, 0)∆s

+

∫

I

eAT (t)(s, 0)MeA(t)(s, 0)A(t)∆s

+ µ(t)

∫

I

AT (t)eAT (t)(s, 0)MeA(t)(s, 0)A(t)∆s

=

∫

I

AT (t)eAT (t)(s, 0)MeA(t)(s, 0)[I + µ(t)A(t)]∆s

+

∫

I

eAT (t)(s, 0)MeA(t)(s, 0)A(t)∆s

=

∫

I

AT (t)eAT (t)(s, 0)M [I + µ(t)A(t)]eA(t)(s, 0)∆s

+

∫

I

eAT (t)(s, 0)MA(t)eA(t)(s, 0)∆s.

But since µ(t) = µ(s), this last line becomes
∫

I

AT (t)eAT (t)(s, 0)M [I + µ(s)A(t)]eA(t)(s, 0)∆s

+

∫

I

eAT (t)(s, 0)MA(t)eA(t)(s, 0)∆s

=

∫

I

[eAT (t)(s, 0)]∆sMeσ
A(t)(s, 0)∆s

+

∫

I

eAT (t)(s, 0)M [eA(t)(s, 0)]∆s∆s

=

∫

I

[eAT (t)(s, 0)MeA(t)(s, 0)]∆s∆s

= eAT (t)(s, 0)MeA(t)(s, 0)
∣∣∞
0

= −M.
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Case II: µ(t) = 0. Since µ(t) = 0, we define the time scale S = R. Now

substituting (4.9) and integrating over I = [0,∞) we obtain

AT (t)Q(t) + Q(t)A(t) + µ(t)AT (t)Q(t)A(t)

= AT (t)Q(t) + Q(t)A(t)

=

∫

I

AT (t)eAT (t)(s, 0)MeA(t)(s, 0)∆s +

∫

I

eAT (t)(s, 0)MeA(t)(s, 0)A(t)∆s

=

∫

I

AT (t)eAT (t)·sMeA(t)·sds +

∫

I

eAT (t)·sMeA(t)·sA(t)ds

=

∫

I

d

ds
[eAT (t)·s]MeA(t)·s + eAT (t)·sM

d

ds
[eA(t)·s]ds

=

∫

I

d

ds
[eAT (t)·sMeA(t)·s]ds

= [eAT (t)·sMeA(t)·s]
∣∣∣
∞

0

= −M.

Since t ∈ T was arbitrary, but fixed, we see that Q(t) defined as in (4.9) is a solution

of (4.8) for each t ∈ T.

Now, to show that Q(t) is unique, suppose that Q∗(t) is another solution to

(4.8). Then

AT (t)[Q∗(t)−Q(t)] + [Q∗(t)−Q(t)]A(t) + µ(t)AT (t)[Q∗(t)−Q(t)]A(t) = 0,

which implies

eAT (t)(s, 0)AT (t)[Q∗(t)−Q(t)]eA(t)(s, 0) + eAT (t)(s, 0)[Q∗(t)−Q(t)]A(t)eA(t)(s, 0)

+ µ(t)eAT (t)(s, 0)AT (t)[Q∗(t)−Q(t)]A(t)eA(t)(s, 0) = 0, s ≥ 0.

From this we obtain

[eAT (t)(s, 0)[Q∗(t)−Q(t)]eA(t)(s, 0)]∆s = 0, s ≥ 0. (4.10)

Integrating both sides of (4.10) over [0,∞)S, we have

[eAT (t)(s, 0)[Q∗(t)−Q(t)]eA(t)(s, 0)]
∣∣∞
0

= −(Q∗(t)−Q(t)) = 0,

which implies that Q∗(t) = Q(t).
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Lastly, suppose that M is positive definite. Then xT Mx > 0, for all n × 1

vectors x 6= 0. Clearly, Q(t) is symmetric. To prove that Q(t) is positive definite, we

notice that for any nonzero n× 1 vector x,

xT Q(t)x =

∫

I

xT eAT (t)(s, 0)MeA(t)(s, 0)x ∆s > 0,

which is true since M is positive definite. Hence, Q(t) is positive definite.

Theorem 4.4 gives a closed form solution for the matrix equation (4.8). The

next theorem offers a closed form solution for the matrix Q(t) that satisfies the re-

quirements of Theorem 4.2.

Theorem 4.5. Let T be a time scale with bounded graininess, (i.e. µmax < ∞).

Suppose (4.1) is uniformly exponentially stable and there exists a positive constant α

such that ||A(t)|| ≤ α for all t. Then

Q(t) =

∫ ∞

t

ΦT
A(s, t)ΦA(s, t)∆s (4.11)

satisfies the requirements of Theorem 4.2, where ΦA is the transition matrix for the

system (4.1).

Proof. First, to show that Q(t) is well-defined, we need to show that the integral

converges at each t ∈ T. Since (4.1) is uniformly exponentially stable, we know that

for some γ, λ ∈ R+ with −λ ∈ R+,

||ΦA(t, t0)|| ≤ γe−λ(t, t0),

for every t, t0 ∈ T with t ≥ t0.

This yields

||
∫ ∞

t

ΦT
A(s, t)ΦA(s, t)∆s|| ≤

∫ ∞

t

||ΦT
A(s, t)|| ||ΦA(s, t)||∆s

≤
∫ ∞

t

(γe−λ(s, t))
2∆s,
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which converges for all t ∈ T. The value to which the last integral converges is also

the value of ρ in Theorem 4.2.

Clearly Q(t) ∈ C1
rd is symmetric at each t. We now show that there exist

η, ν > 0 so that the hypotheses in Theorem 4.2 are satisfied.

For ν, using the Leibniz rule for time scales [6], we differentiate (4.11) with

respect to t, obtaining

Q∆(t) =

∫ ∞

t

[
ΦT

A(s, t)ΦA(s, t)
]∆t

∆s− ΦT
A(t, σ(t))ΦA(t, σ(t))

=

∫ ∞

t

ΦT
A(s, t)∆tΦA(s, σ(t)) + ΦT

A(s, t)ΦA(s, t)∆t∆s

− ΦT
A(t, σ(t))ΦA(t, σ(t))

=

∫ ∞

t

[−ΦA(s, σ(t))A(t)]T ΦA(s, σ(t))− ΦT
A(s, t)ΦA(s, σ(t))A(t)∆s

− ΦT
A(t, σ(t))ΦA(t, σ(t))

=

∫ ∞

t

−AT (t)ΦT
A(s, σ(t))ΦA(s, σ(t))− ΦT

A(s, t)ΦA(s, σ(t))A(t)∆s−

ΦT
A(t, σ(t))ΦA(t, σ(t))

=

∫ ∞

t

−AT (t)ΦªAT (σ(t), s)ΦT
ªAT (σ(t), s)− ΦT

A(s, t)ΦT
ªAT (σ(t), s)A(t)∆s

− ΦªAT (σ(t), t)ΦT
ªAT (σ(t), t)

= −AT (t)(I + µ(t)AT (t))−1

∫ ∞

t

ΦªAT (t, s)
[
(I + µ(t)AT (t))−1ΦªAT (t, s)

]T
∆s

−
∫ ∞

t

ΦT
A(s, t)

[
(I + µ(t)AT (t))−1ΦªAT (t, s)

]T
∆sA(t)

− (I + µ(t)AT (t))−1ΦªAT (t, t)
[
(I + µ(t)AT (t))−1ΦªAT (t, t)

]T

= −AT (t)(I + µ(t)AT (t))−1

∫ ∞

t

ΦªAT (t, s)ΦT
ªAT (t, s)∆s(I + µ(t)A(t))−1

−
∫ ∞

t

ΦT
A(s, t)ΦT

ªAT (t, s)∆s(I + µ(t)A(t))−1A(t)

− (I + µ(t)AT (t))−1ΦªAT (t, t)ΦT
ªAT (t, t)(I + µ(t)A(t))−1

= −(I + µ(t)AT (t))−1AT (t)Q(t)(I + µ(t)A(t))−1

−Q(t)A(t)(I + µ(t)AT (t))−1 − (I + µ(t)AT (t))−1(I + µ(t)A(t))−1.
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Premultiplying both sides by (I + µ(t)AT (t)) and postmultiplying both sides by (I +

µ(t)A(t)), we obtain

(I + µ(t)AT (t))Q∆(t)(I + µ(t)A(t)) = −AT (t)Q(t)− (I + µ(t)AT (t))Q(t)A(t)− I,

which is equivalent to

AT (t)Q(t) + (I + µ(t)AT (t))Q(t)A(t) + (I + µ(t)AT (t))Q∆(t)(I + µ(t)A(t)) = −I.

So we set ν = 1.

Lastly, we show that there exists an η > 0 such that Q(t) ≥ ηI, for all t ∈ T.

For any x,

[
xT ΦT

A(s, t)ΦA(s, t)x
]∆s

= xT
[
(A(s)ΦA(s, t))T (I + µ(s)A(s))ΦA(s, t)

+ΦT
A(s, t)A(s)ΦA(s, t)

]
x

= xT ΦT
A(s, t)

[
AT (s) + A(s) + µ(s)AT (s)A(s)

]
ΦA(s, t)x

≥ −||AT (s) + A(s) + µ(s)AT (s)A(s)||xT ΦT
A(s, t)ΦA(s, t)x

≥ −(2α + µmaxα
2)xT ΦT

A(s, t)ΦA(s, t)x.

Since ΦA → 0 as s →∞, we integrate both sides to obtain

∫ ∞

t

[
xT ΦT

A(s, t)ΦA(s, t)x
]∆s

∆s ≥ −(2α + µmaxα
2)xT

∫ ∞

t

ΦT
A(s, t)ΦA(s, t)∆s x

= −(2α + µmaxα
2)xT Q(t)x

which, after evaluating the integral, implies

−xT x ≥ −(2α + µmaxα
2)xT Q(t)x.

But this is of course equivalent to

Q(t) ≥ 1

(2α + µmaxα2)
I, t ∈ T.

So we set η = 1
(2α+µmaxα2)

.
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We remark that with the same hypotheses of Theorem 4.5, the more general

form

Q(t) =

∫ ∞

t

ΦT
A(s, t)MΦA(s, t)∆s

is a solution to matrix equation (4.3).

4.5 Slowly Varying Systems

The correct placement of eigenvalues in the complex plane of a time invariant

system is necessary and sufficient to ensure the stability and/or exponential stability

of the system. This is a well-known fact in the theory of differential equations and

difference equations, and it is investigated in depth in the landmark paper on the

stability of time invariant linear systems on time scales by Pötzsche, Siegmund, and

Wirth [40].

However, eigenvalue placement alone is neither necessary nor sufficient for sta-

bility in the general time varying time scales case. Texts such as Brogan [7], Chen

[9], and Rugh [42] give the following example of a time varying systems with “frozen”

(time invariant) eigenvalues with negative real parts as well as bounded system ma-

trices that still exhibit instability.

Example 4.3. Given the linear dynamic equation (4.1) with t0 = 0 on the time scale

T = R and

A(t) =




−1 + α cos2(t) 1− α sin(t) cos(t)

−1− α sin(t) cos(t) −1 + α sin2(t)


 ,

where α is a positive constant, the pointwise eigenvalues are constants, given by

λ(t) = λ =
α− 2±√α2 − 4

2
.

The transition matrix is given by

ΦA(t, 0) =




e(α−1)t cos(t) e−t sin(t)

e(α−1)t sin(t) e−t cos(t)


 .
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Thus, even though the pointwise eigenvalues have negative real parts with 0 < α < 2,

the system exhibits unstable solutions when α > 1.

The classic papers by Desoer [13], Rosenbrock [41], and a recent paper by

Solo [46] demonstrate this fact for systems of differential equations as well, but they

do show that under certain conditions, such as a bounded and sufficiently slowly

varying system matrix, exponential stability can be obtained with correct eigenvalue

placement in the complex plane. Desoer also published a similar paper [14] (a discrete

analog to [13]) which illustrates the same instability characteristic of time varying

systems in the discrete setting, but remedies the situation in essentially the same

manner, with a bounded and sufficiently slowly varying system matrix.

To begin, we state a definition from Pötzsche, Siegmund, and Wirth’s paper

[40], in which the stability region for time invariant linear systems on time scales is

introduced.

Definition 4.2. [40] The regressive stability region for the dynamic system (4.1) when

A(t) ≡ A is a constant is defined to be the set

S(T) =

{
λ ∈ C : lim sup

T→∞

1

T − t0

∫ T

t0

lim
s↘µ(τ)

Log |1 + sλ|
s

∆τ < 0

}
.

It is easy to see that the regressive stability region is always contained in {λ ∈
C : Re(λ) < 0}. This definition essentially says if the time average of the constant

λ ∈ C is negative and 1+µ(t)λ 6= 0 for all t ∈ Tκ, then λ resides in the set S(T). This

definition is an important part of the requirement for exponential stability of a time

invariant linear system on an arbitrary time scale. If λi ∈ S(T) for all i = 1, . . . , n,

along with a constant δ > 0 such that 0 < δ−1 ≤ |1 + µ(t)λi|, for all t ∈ Tκ, then the

system (4.1), with A(t) ≡ A constant, is uniformly exponentially stable, (i.e. there

exists an α > 0 such that for any t0 ∈ T, γ > 0 can be chosen independently of t0

such that ||ΦA(t, t0)|| ≤ ||x(t0)||γe−α(t−t0)). The reader is referred to [40] for more

explanation.
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In the main theorem that follows, we require the eigenvalues λi(t) of the time

varying matrix A(t) to satisfy Reµ[λi(t)] ≤ −ε < 0 for some ε > 0, all t ∈ T, and

all i = 1, . . . , n, which is equivalent to all eigenvalues residing in the corresponding

Hilger circle for all t ∈ T and i = 1, . . . , n. Recall that the Hilger circle is defined as

the set {
λ ∈ C :

∣∣∣∣
1

µ(t)
+ λ(t)

∣∣∣∣ <
1

µ(t)

}
⊂ S(T).

Finally, we introduce the definition of the Kronecker product for use in The-

orem 4.6. The Kronecker product allows the multiplication of any two matrices,

regardless of the dimensions. This operation is an integral part of the theorem since

it offers an unusual way to represent a matrix equation as a vector valued equation

from which we can easily obtain bounds on the solution matrix.

Definition 4.3. The Kronecker product of the nA × mA matrix A and the nB × mB

matrix B is the nAnB ×mAmB matrix

A⊗B =




a11B · · · a1mA
B

...
. . .

...

anA1B · · · anAmA
B




.

Some properties of the Kronecker product are contained in the following lemma

[49].

Lemma 4.1. Assume A ∈ Rm×m and B ∈ Rn×n with complex valued entries.

(i) (A⊗ In)(Im ⊗B) = A⊗B = (Im ⊗B)(A⊗ In).

(ii) If λi and γj are the eigenvalues for A and B respectively, with i = 1, . . . , m

and j = 1, . . . , n, then the eigenvalues of A⊗B are

λiγj, i = 1, . . . ,m, j = 1, . . . , n,

and the eigenvalues of (A⊗ In) + (Im ⊗B) are

λi + γj, i = 1, . . . , m, j = 1, . . . , n.
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We now present the theorem for uniform exponential stability of slowly time

varying systems which involves an eigenvalue condition on the time varying matrix

A(t) as well as the requirement that A(t) is norm bounded and varies at a sufficiently

slow rate (i.e. ||A∆(t)|| ≤ β, for some positive constant β and all t ∈ T).

Theorem 4.6 (Exponential Stability for Slowly Time Varying Systems). Suppose for

the regressive time varying linear dynamic system (4.1) with A(t) ∈ C1
rd(T,Rn×n) we

have µmax, µ∆
max < ∞, there exists a constant α > 0 such that ||A(t)|| ≤ α, and there

exists a constant 0 < ε < 1
µmax

≤ 1
µ(t)

such that for every pointwise eigenvalue λi(t)

of A(t), the Hilger real part satisfies Reµ[λi(t)] ≤ −ε < 0. Then there exists a β > 0

such that if ||A∆(t)|| ≤ β, (4.1) is uniformly exponentially stable.

Proof. For each t ∈ T, let Q(t) be the solution of

AT (t)Q(t) + Q(t)A(t) + µ(t)AT (t)Q(t)A(t) = −I. (4.12)

By Theorem 4.4, existence, uniqueness, and positive definiteness of Q(t) for each t is

guaranteed. We also note that for each t ∈ T, the solution of (4.12) is

Q(t) =

∫

I

eAT (t)(s, 0)eA(t)(s, 0)∆s,

where I := [0,∞)S and S = µ(t)N0. For the remaining part of the proof, we show

that Q(t) can be used to satisfy the requirements of Theorem 4.2, so that uniform

exponential stability of (4.1) follows. First, we use the Kronecker product and some

of its properties to show the boundedness of the matrix Q(t). We let ei denote the

ith column of I, and qi(t) denote the ith column of Q(t). We then define the n2 × 1

vectors

e =




e1

...

en




, q(t) =




q1(t)

...

qn(t)




.
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It can be computed to confirm that the n× n matrix equation (4.12) can be written

as the n2 × 1 vector equation

[
(AT (t)⊗ I) + (I ⊗ AT (t)) + µ(t)(AT (t)⊗ AT (t))

]
q(t) = −e. (4.13)

We now prove that q(t) is bounded above and that there exists a positive constant ρ

such that Q(t) ≤ ρI, for all t ∈ T. Since A(t) ∈ R, this implies that the pointwise

eigenvalues λ1(t), . . . , λn(t) of A(t) are also regressive. We also note that I ∈ R.

The pointwise eigenvalues of AT (t) ⊗ I and I ⊗ AT (t) are also λ1(t), . . . , λn(t), by

previously mentioned properties of the Kronecker product in Lemma 4.1. Because

(R(T,Rn2×n2
),⊕) is a group we have that (AT (t)⊗ I), (I ⊗ AT (t)) ∈ R yields

(AT (t)⊗ I)⊕ (I ⊗ AT (t))

= (AT (t)⊗ I) + (I ⊗ AT (t)) + µ(t)(AT (t)⊗ I)(I ⊗ AT (t))

= (AT (t)⊗ I) + (I ⊗ AT (t)) + µ(t)(AT (t)⊗ AT (t)) ∈ R,

for all t ∈ T.

Now, we show that (AT (t) ⊗ I) ⊕ (I ⊗ AT (t)) has no eigenvalues equal to

zero, so that det
[
(AT (t)⊗ I)⊕ (I ⊗ AT (t))

] 6= 0. The n2 pointwise eigenvalues of

(AT (t)⊗ I)⊕ (I ⊗ AT (t)) = (AT (t)⊗ I) + (I ⊗ AT (t)) + µ(t)(AT (t)⊗ AT (t)) are

λi,j(t) = λi(t)⊕ λj(t) = λi(t) + λj(t) + µ(t)λi(t)λj(t) ∈ R,

for all i, j = 1, . . . , n.

Recall that since Reµ[λi(t)] ≤ −ε we have that |1 + µ(t)λi(t)| < 1. Observe

Reµ[λi(t)⊕ λj(t)] =
|1 + µ(t)(λi(t)⊕ λj(t))| − 1

µ(t)

=
|(1 + µ(t)λi(t))||(1 + µ(t)λj(t))| − 1

µ(t)

<
|(1 + µ(t)λj(t))| − 1

µ(t)

= Reµ[λj(t)]

≤ −ε,
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for all t ∈ T and all i, j = 1, . . . , n. Therefore, Reµ[λi(t) ⊕ λj(t)] < −ε < 0 for

0 < ε < 1
µmax

≤ 1
µ(t)

and we also have the relationship 0 < ε ≤ |Reµ[λi(t) ⊕ λj(t)]| ≤
|λi(t)⊕ λj(t)|.

Thus

∣∣det
[
(AT (t)⊗ I)⊕ (I ⊗ AT (t))

]∣∣ =

∣∣∣∣∣
n∏

i,j=1

[λi(t)⊕ λj(t)]

∣∣∣∣∣ ≥ εn2

, t ∈ T. (4.14)

Now it is clear that (AT (t) ⊗ I) ⊕ (I ⊗ AT (t)) is invertible at each t ∈ T since the

determinant in (4.14) is nonzero and bounded away from zero for all t. Since A(t)

and µ(t) are bounded above, AT (t)⊗ I is bounded above, and hence the inverse

[
(AT (t)⊗ I)⊕ (I ⊗ AT (t))

]−1

is also bounded for all t ∈ T. Since the right side of (4.13) is constant, we conclude

that q(t) is bounded for all t ∈ T.

Clearly, Q(t) ∈ C1
rd(T,Rn×n) and Q(t) is symmetric. Now we show that there

exists a ν > 0 such that

AT (t)Q(t) + (I + µ(t)AT (t))Q(t)A(t) + (I + µ(t)A(t))T Q∆(t)(I + µ(t)A(t)) ≤ −νI,

for all t ∈ T. Since Q(t) satisfies (4.12), the above inequality is equivalent to

(I + µ(t)A(t))T Q∆(t)(I + µ(t)A(t)) ≤ (1− ν)I,

which gives

Q∆(t) ≤ (1− ν)(I + µ(t)AT (t))−1(I + µ(t)A(t))−1. (4.15)

Delta differentiating (4.12) with respect to t, we obtain

AT σ

(t)Q∆(t) + AT∆

(t)Q(t) + Q∆(t)Aσ(t) + Q(t)A∆(t)

+ µ∆(t)AT (t)Q(t)A(t) + µσ(t)AT∆

(t)Q(t)A(t)

+ µσ(t)AT σ

(t)Q∆(t)A(t) + µσ(t)AT σ

(t)Qσ(t)A∆(t) = 0.
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Recalling Qσ(t) = µ(t)Q∆(t) + Q(t), the equation above becomes

AT σ

(t)Q∆(t) + AT∆

(t)Q(t) + Q∆(t)Aσ(t) + Q(t)A∆(t)

+ µ∆(t)AT (t)Q(t)A(t) + µσ(t)AT∆

(t)Q(t)A(t)

+ µσ(t)AT σ

(t)Q∆(t)A(t) + µ(t)µσ(t)AT σ

(t)Q∆(t)A∆(t)

+ µσ(t)AT σ

(t)Q(t)A∆(t) = 0.

Therefore,

AT σ

(t)Q∆(t) + Q∆(t)Aσ(t) + µσ(t)AT σ

(t)Q∆(t)A(t) + µ(t)µσ(t)AT σ

(t)Q∆(t)A∆(t)

= −AT∆

(t)Q(t)−Q(t)A∆(t)− µ∆(t)AT (t)Q(t)A(t)− µσ(t)AT∆

(t)Q(t)A(t)

− µσ(t)AT σ

(t)Q(t)A∆(t).

Transforming only the left hand side, we have

AT σ

(t)Q∆(t) + Q∆(t)Aσ(t) + µσ(t)AT σ

(t)Q∆(t)A(t) + µ(t)µσ(t)AT σ

(t)Q∆(t)A∆(t)

= AT σ

(t)Q∆(t) + Q∆(t)Aσ(t) + µσ(t)AT σ

(t)Q∆(t)(A(t) + µ(t)A∆(t))

= AT σ

(t)Q∆(t) + Q∆(t)Aσ(t) + µσ(t)AT σ

(t)Q∆(t)Aσ(t).

Thus, we now have

AT σ

(t)Q∆(t) + Q∆(t)Aσ(t) + µσ(t)AT σ

(t)Q∆(t)Aσ(t)

= −AT∆

(t)Q(t)−Q(t)A∆(t)− µ∆(t)AT (t)Q(t)A(t)− µσ(t)AT∆

(t)Q(t)A(t)

− µσ(t)AT σ

(t)Q(t)A∆(t). (4.16)

For simplicity, let

X = AT∆

(t)Q(t) + Q(t)A∆(t) + µ∆(t)AT (t)Q(t)A(t)

+ µσ(t)AT∆

(t)Q(t)A(t) + µσ(t)AT σ

(t)Q(t)A∆(t).

Then the solution, Q∆(t), of the matrix equation (4.16) can be written as

Q∆(t) =

∫

Iσ

eATσ (t)(s, 0)XeAσ(t)(s, 0)∆s, t ∈ Tκ = T,
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where Iσ := [0,∞)Sσ and Sσ = µσ(t)N0. To obtain a bound on Q∆(t), we use the

boundedness of Q(t), Qσ(t), A(t), A∆(t), µmax, and µ∆
max. For any n× 1 vector x and

any t,

|xT eATσ (t)(s, 0)XeAσ(t)(s, 0)x|

= |xT eATσ
(t)(s, 0)[AT∆

(t)Q(t) + Q(t)A∆(t) + µ∆(t)AT (t)Q(t)A(t)

+ µσ(t)AT∆

(t)Q(t)A(t) + µσ(t)AT σ

(t)Q(t)A∆(t)]eAσ(t)(s, 0)x|

≤ ||AT∆

(t)Q(t) + Q(t)A∆(t) + µ∆(t)AT (t)Q(t)A(t)

+ µσ(t)AT∆

(t)Q(t)A(t) + µσ(t)AT σ

(t)Q(t)A∆(t)||xT eATσ (t)(s, 0)eAσ(t)(s, 0)x.

Thus

|xT Q∆(t)x| =
∣∣∣∣
∫

Iσ

xT eATσ (t)(s, 0)XeAσ(t)(s, 0)x∆s

∣∣∣∣

≤ ||AT∆

(t)Q(t) + Q(t)A∆(t) + µ∆(t)AT (t)Q(t)A(t) + µσ(t)AT∆

(t)Q(t)A(t)

+ µσ(t)ATσ(t)Q(t)A∆(t)||xT Qσ(t)x

≤ (2β||Q(t)||+ µ∆
maxα

2||Q(t)||+ 2µmaxαβ||Q(t)||)xT Qσ(t)x

= ||Q(t)||(2β + α2µ∆
max + 2αβµmax)x

T Qσ(t)x.

We now maximize the right hand side over all unit vectors x to obtain

|xT Q∆(t)x| ≤ ||Q(t)|| ||Qσ(t)||(2β + α2µ∆
max + 2αβµmax),

and after maximizing the left hand side over all unit vectors x we conclude

||Q∆(t)|| ≤ ||Q(t)|| ||Qσ(t)||(2β + α2µ∆
max + 2αβµmax), t ∈ Tκ.

Using α, µmax, µ∆
max, and the norm bounds on Q(t) and Qσ(t), the bound β on

||A∆(t)|| can be chosen so that we can create a bound for Q∆(t) which in turn yields

a value for ν in (4.15).
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Lastly, we show that there exists a positive constant η such that ηI ≤ Q(t),

for all t ∈ T. For any t and any n× 1 vector x,

[xT eAT (t)(s, 0)eA(t)(s, 0)x]∆s

= xT [AT (t)eAT (t)(s, 0)eA(t)(s, 0) + eAT (t)(s, 0)eA(t)(s, 0)A(t)

+ µ(t)AT (t)eAT (t)(s, 0)eA(t)(s, 0)A(t)]x

= xT eAT (t)(s, 0)[AT (t) + A(t) + µ(t)AT (t)A(t)]eA(t)(s, 0)x

≥ (−2α− µmaxα
2)xT eAT (t)(s, 0)eA(t)(s, 0)x.

As s →∞, we know that eA(t)(s, 0) → 0, so that

−xT x =

∫

I

[xT eAT (t)(s, 0)eA(t)(s, 0)x]∆s∆s ≥ (−2α− µmaxα
2)xT Q(t)x.

But of course this is equivalent to

Q(t) ≥ 1

(2α + µmaxα2)
I, t ∈ T.

So we set η = 1
(2α+µmaxα2)

.

4.6 Perturbation Results

It is also useful to consider state equations that are “close” (in an appropriate

sense) to another linear state equation that is uniformly stable or uniformly exponen-

tially stable. In Kalman and Bertram [30, 31], as well as Rugh [42], if the stability of

the system (4.1) has already been determined by an appropriate Lyapunov function,

then certain conditions on the perturbation matrix F (t) guarantee stability of the

perturbed linear system

z∆(t) = [A(t) + F (t)]z(t), z(t0) = z0. (4.17)

Motivated by these works, our aim is to prove analogous results for the general time

scales case.

Theorem 4.7. Suppose the linear state equation (4.1) is uniformly stable. Then there

exists some β > 0 such that if
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∫ ∞

τ

||F (s)||∆s ≤ β

for all τ ∈ T, the perturbed linear dynamic equation (4.17) is uniformly stable.

Proof. For any t0 and z(t0) = z0, by Theorem 2.7 the solution of (4.17) satisfies

z(t) = ΦA(t, t0)z0 +

∫ t

t0

ΦA(t, σ(s))F (s)z(s)∆s,

where ΦA(t, t0) is the transition matrix for the system (4.1). By the uniform stability

of (4.1), there exists a constant γ > 0 such that ||ΦA(t, τ)|| ≤ γ, for all t, τ ∈ T with

t ≥ τ . Taking the norms of both sides, we see

||z(t)|| ≤ γ||z0||+
∫ t

t0

γ||F (s)|| ||z(s)||∆s, t ≥ t0.

Applying Gronwall’s Inequality and a result in [16], we obtain

||z(t)|| ≤ γ||z0||eγ||F ||(t, t0)

= γ||z0|| exp

(∫ t

t0

Log(1 + µ(s)γ||F (s)||)
µ(s)

∆s

)

≤ γ||z0|| exp

(∫ ∞

t0

Log(1 + µ(s)γ||F (s)||)
µ(s)

∆s

)

≤ γ||z0|| exp

(∫ ∞

t0

γ||F (s)||∆s

)

≤ γ||z0||eγβ, t ≥ t0.

Since γ can be used for any t0 and z(t0) = z0, the state equation (4.17) is uniformly

stable.

Theorem 4.8. Suppose the linear state equation (4.1) is uniformly exponentially stable

(i.e. ||ΦA(t, t0)|| ≤ γe−λ(t, t0) for some constants λ, γ > 0 with −λ ∈ R+) and the

exponential decay factor −λ is uniformly regressive on the time scale T. Then there

exists some β > 0 such that if

||F (t)|| ≤ β (4.18)

for all t ≥ t0 with t, t0 ∈ T, the perturbed linear dynamic equation (4.17) is uniformly

exponentially stable.
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Proof. For any t0 and z(t0) = z0, by Theorem 2.7 the solution of (4.17) satisfies

z(t) = ΦA(t, t0)z0 +

∫ t

t0

ΦA(t, σ(s))F (s)z(s)∆s,

where ΦA(t, t0) is the transition matrix for the system (4.1). By the uniform expo-

nential stability of (4.1), there exist constants γ, λ > 0 with −λ ∈ R+ such that

||ΦA(t, τ)|| ≤ γe−λ(t, τ), for all t, τ ∈ T with t ≥ τ . By taking the norms of both

sides, we have

||z(t)|| ≤ γe−λ(t, t0)||z0||+
∫ t

t0

γe−λ(t, σ(s))||F (s)|| ||z(s)||∆s, t ≥ t0.

Rearranging and applying the uniform regressivity bound 0 < δ−1 ≤ (1− µ(t)λ), for

some δ > 0 and all t ∈ T, and the inequality (4.18),

e−λ(t0, t)||z(t)|| ≤ γ||z0||+
∫ t

t0

γ||F (s)||e−λ(t0, s)e−λ(s, σ(s))||z(s)||∆s

≤ γ||z0||+
∫ t

t0

γβ(1− µ(s)λ)−1e−λ(t0, s)||z(s)||∆s

≤ γ||z0||+
∫ t

t0

γβδe−λ(t0, s)||z(s)||∆s, t ≥ t0.

Defining ψ(t) := e−λ(t0, t)||z(t)||, we now have

ψ(t) ≤ γ||z0||+
∫ t

t0

γβδψ(s) ∆s, t ≥ t0.

By Gronwall’s Inequality, we obtain

ψ(t) ≤ γ||z0||eγβδ(t, t0), t ≥ t0.

Thus, substituting back in for ψ(t), we conclude

||z(t)|| ≤ γ||z0||eγβδ(t, t0)e−λ(t, t0) = e−λ⊕γβδ(t, t0), t ≥ t0.

We need −λ ⊕ γβδ ∈ R+ and negative for all t ∈ T. Observe, since γβδ > 0, it is

positively regressive, and so γβδ ∈ R+. Since R+ is a subgroup of R, we see that
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−λ⊕ γβδ ∈ R+. So we must have

−λ < −λ⊕ γβδ < 0

−λ < −λ + γβδ − µ(t)λγβδ < 0

0 < γβδ − µ(t)λγβδ < λ

0 < γβδ(1− µ(t)λ) < λ

0 < β <
λ

γδ(1− µ(t)λ)

for all t ∈ T. Thus, by choosing β accordingly and since γ is independent of t0 and

z(t0) = z0, the state equation (4.17) is uniformly exponentially stable.

In the following theorem, we show that under certain conditions on the linear

and nonlinear perturbations, the resulting perturbed nonlinear initial value problem

will still yield uniformly exponentially stable solutions.

Theorem 4.9. Given the nonlinear regressive initial value problem

x∆(t) = [A(t) + F (t)] x(t) + g(t, x(t)), x(t0) = x0, (4.19)

and an arbitrary time scale T, suppose (4.1) is uniformly exponentially stable (i.e.

||ΦA(t, t0)|| ≤ γe−λ(t, t0) for some constants λ, γ > 0 with −λ ∈ R+) and the ex-

ponential decay factor −λ is uniformly regressive on the time scale T, the matrix

F (t) ∈ Crd(T,Rn×n) satisfies ||F (t)|| ≤ β for all t ∈ T, the vector-valued function

g(t, x(t)) ∈ Crd(T,Rn) satisfies ||g(t, x(t))|| ≤ ε||x(t)|| for all t ∈ T and x(t), and the

solution x(t) ∈ C1
rd(T,Rn) is defined for all t ≥ t0. Then if β and ε are sufficiently

small, there exist constants γ, λ∗ > 0 with −λ∗ ∈ R+ such that

||x(t)|| ≤ γ||x0||e−λ∗(t, t0)

for all t ≥ t0.

Proof. Observe that the solution to (4.19) is given by

x(t) = ΦA(t, t0)x0 +

∫ t

t0

ΦA(t, σ(s))[F (s)x(s) + g(s, x(s))]∆s, (4.20)
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for all t ≥ t0. Since (4.1) is uniformly exponentially stable, there exist constants

γ, λ > 0 with −λ ∈ R+ such that ||ΦA(t, t0)|| ≤ γe−λ(t, t0) for all t ≥ t0. Recall

||F (t)|| ≤ β, ||g(t, x(t))|| ≤ ε||x(t)|| for all t ∈ T, and since the decay factor −λ is

uniformly regressive on T, there exists a δ > 0 such that 0 < δ−1 ≤ (1 − µ(t)λ) for

all t ∈ T which implies that 0 < (1 − µ(t)λ)−1 ≤ δ. Taking the norms of both sides

of (4.20), we obtain

||x(t)|| ≤ ||ΦA(t, t0)|| ||x0||+
∫ t

t0

||ΦA(t, σ(s))||(||F (s)|| ||x(s)||+ ||g(s, x(s))||)∆s

≤ γe−λ(t, t0) ||x0||+
∫ t

t0

γe−λ(t, σ(s))(β||x(s)||+ ε||x(s)||)∆s

≤ e−λ(t, t0)

[
γ||x0||+

∫ t

t0

γe−λ(t0, σ(s))(β + ε)||x(s)||∆s

]

= e−λ(t, t0)

[
γ||x0||+

∫ t

t0

γ(β + ε)e−λ(t0, s)e−λ(s, σ(s))||x(s)||∆s

]

= e−λ(t, t0)

[
γ||x0||+

∫ t

t0

γ(β + ε)e−λ(t0, s)(1− µ(s)λ)−1||x(s)||∆s

]

≤ e−λ(t, t0)

[
γ||x0||+

∫ t

t0

γ(β + ε)e−λ(t0, s)δ||x(s)||∆s

]

= e−λ(t, t0)

[
γ||x0||+

∫ t

t0

γδ(β + ε)e−λ(t0, s)||x(s)||∆s

]
,

for all t ≥ t0. Define ψ(t) := e−λ(t0, t)||x(t)||. We now have

ψ(t) ≤ γ||x0||+
∫ t

t0

γδ(β + ε)ψ(s)∆s,

and by Gronwall’s inequality,

ψ(t) ≤ γ||x0||eγδ(β+ε)(t, t0).

Substituting back in for ψ(t) this implies

||x(t)|| ≤ γ||x0||eγδ(β+ε)(t, t0)e−λ(t, t0) = γ||x0||e−λ⊕γδ(β+ε)(t, t0).

To conclude, we need −λ⊕γδ(β + ε) ∈ R+ and at the same time −λ⊕γδ(β + ε) < 0.

Observe that γδ(β + ε) > 0 implies γδ(β + ε) ∈ R+ and since R+ is a subgroup of R,
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we have −λ⊕ γδ(β + ε) ∈ R+. So we need

−λ < −λ⊕ γδ(β + ε) < 0

−λ < −λ + γδ(β + ε)− µ(t)λγδ(β + ε) < 0

0 < γδ(β + ε)− µ(t)λγδ(β + ε) < λ

0 < (1− µ(t)λ)γδ(β + ε) < λ

0 < β <
λ

(1− µ(t)λ)γδ
− ε.

From this result, we must have λ
(1−µ(t)λ)γδ

− ε > 0 for all t ∈ T, i.e. ε < λ
(1−µ(t)λ)γδ

for

all t ∈ T.

Thus, to fulfill the requirements of the theorem, we must satisfy the following:

0 < ε <
λ

(1− µ(t)λ)γδ
, 0 < β <

λ

(1− µ(t)λ)γδ
− ε, and −λ∗ := −λ⊕ γδ(β + ε)

for all t ∈ T.

Corollary 4.2. Given the nonlinear regressive initial value problem (4.19) with A(t) ≡
A a constant matrix, suppose spec(A) ∈ S(T) for all t ∈ T, the exponential decay

factor in uniformly regressive, the matrix F (t) ∈ Crd(T,Rn×n) satisfies ||F (t)|| ≤ β

for all t ∈ T, the vector-valued function g(t, x(t)) ∈ Crd(T,Rn) satisfies ||g(t, x(t))|| ≤
ε||x(t)|| for all t ∈ T and x(t), and the solution x(t) ∈ C1

rd(T,Rn) is defined for all

t ≥ t0. Then if β and ε are sufficiently small, there exist constants γ, λ∗ > 0 with

−λ∗ ∈ R+ such that

||x(t)|| ≤ γ||x0||e−λ∗(t, t0)

for all t ≥ t0.

Proof. The proof follows exactly as in Theorem 4.9, with the observation that ΦA(t, t0) ≡
eA(t, t0), so the solution to (4.1) with A(t) ≡ A is x(t) = eA(t, t0)x0 and thus we now

have the bound ||ΦA(t, t0)|| = ||eA(t, t0)|| ≤ γe−λ(t, t0), for some constants γ, λ > 0

with −λ ∈ R+.
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4.7 Instability Criterion

We can also employ the unified time scale quadratic Lyapunov function to

determine when the system (4.1) is unstable. This is a very useful result when the

development of a suitable matrix Q(t) is difficult and the possibility of an unstable

system arises. In the next theorem, we develop one type of instability criterion.

Theorem 4.10. Suppose there exists an n×n matrix Q(t) ∈ C1
rd that is symmetric for

all t ∈ T and has the following two properties

(i) ||Q(t)|| ≤ ρ,

(ii) AT (t)Q(t) + (I + µ(t)AT (t))(Q∆(t) + Q(t)A(t) + µ(t)Q∆(t)A(t)) ≤ −νI,

where ρ, ν > 0. Also suppose that there exists some t∗ ∈ T such that Q(t∗) is not

positive semidefinite. Then the linear dynamic equation (4.1) is not uniformly stable.

Proof. Suppose that x(t) is the solution of (4.1) with initial conditions t0 = t∗ and

x(t0) = x(t∗) = x0 with xT
0 Q(t∗)x0 < 0. Then

xT (t)Q(t)x(t)− xT
0 Q(t0)x0 =

∫ t

t0

[
xT (s)Q(s)x(s)

]∆s
∆s

≤ −ν

∫ t

t0

xT (s)x(s)∆s ≤ 0, t ≥ t0.

From this inequality, we see

xT (t)Q(t)x(t) ≤ xT
0 Q(t0)x0 < 0, t ≥ t0.

By condition (ii),

−ρ||x(t)||2 ≤ xT (t)Q(t)x(t) ≤ xT (t0)Q(t0)x(t0) < 0, t ≥ t0,

which leads to

||x(t)||2 ≥ 1

ρ
|xT (t)Q(t)x(t)| > 0, t ≥ t0. (4.21)
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Again by condition (ii),

ν

∫ t

t0

xT (s)x(s)∆s ≤ xT
0 Q(t0)x0 − xT (t)Q(t)x(t)

≤ |xT
0 Q(t0)x0|+ |xT (t)Q(t)x(t)|

≤ 2|xT (t)Q(t)x(t)|, t ≥ t0.

Using (4.10), we obtain

∫ t

t0

xT (s)x(s)∆s ≤ 2ρ

ν
||x(t)||2, t ≥ t0. (4.22)

Finally, we show that x(t) is unbounded and hence (4.1) is not uniformly stable. To

this end, suppose there exists some γ > 0 so that ||x(t)|| ≤ γ for all t ≥ t0. Then

(4.22) implies ∫ t

t0

xT (s)x(s)∆s ≤ 2ργ2

ν
, t ≥ t0.

By this last inequality, ||x(t)|| → 0 as t → ∞, which contradicts (4.21). Thus, the

solution x(t) cannot be bounded, which shows that (4.1) is not uniformly stable.



CHAPTER FIVE

The Lyapunov Transformation and Stability

We begin by analyzing the stability preserving property associated with a

change of variables using a Lyapunov transformation on the regressive time vary-

ing linear dynamic system

x∆(t) = A(t)x(t), x(t0) = x0. (5.1)

Definition 5.1. A Lyapunov transformation is an invertible matrix L(t) ∈ C1
rd(T,Rn×n)

with the property that, for some positive η, ρ ∈ R,

||L(t)|| ≤ ρ and det L(t) ≥ η (5.2)

for all t ∈ T.

The two following lemmas can be found in the classic text by Aitken [2].

Lemma 5.1. Suppose that A(t) is an n×n matrix such that A−1(t) exists for all t ∈ T.

If there exists a constant α > 0 such that ||A−1(t)|| ≤ α for each t, then there exists

a constant β such that | det A(t)| ≥ β for all t ∈ T.

Lemma 5.2. Suppose that A(t) is an n×n matrix such that A−1(t) exists for all t ∈ T.

Then

||A−1(t)|| ≤ ||A(t)||n−1

| det A(t)|
for all t ∈ T.

A consequence of Lemma 5.1 and Lemma 5.2 is that the inverse of a Lyapunov

transformation is also bounded. An equivalent condition to (5.2) is that there exists

a ρ > 0 such that

||L(t)|| ≤ ρ and ||L−1(t)|| ≤ ρ (5.3)

for all t ∈ T.

64
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Theorem 5.1. Suppose that L(t) ∈ C1
rd(T,Rn×n), with L(t) invertible for all t ∈ T

and A(t) is from the linear dynamic system (5.1). Then the transition matrix for the

system

Z∆(t) = G(t)Z(t), Z(τ) = I (5.4)

where

G(t) = Lσ−1

(t)A(t)L(t)− Lσ−1

(t)L∆(t) (5.5)

is given by

ΦG(t, τ) = L−1(t)ΦA(t, τ)L(τ), (5.6)

for any t, τ ∈ T.

Proof. First we see that by definition, G(t) ∈ Crd(T,Rn×n). For any τ ∈ T, we define

X(t) = L−1(t)ΦA(t, τ)L(τ). (5.7)

It is obvious that for t = τ , X(τ) = I. Temporarily rearranging (5.7) by multiplying

by L(t) on both sides and differentiating L(t)X(t) with respect to t, we obtain [6,

Thm. 5.3 (iv)]

L∆(t)X(t) + Lσ(t)X∆(t) = Φ∆
A(t, τ)L(τ) = A(t)ΦA(t, τ)L(τ),

and thus

Lσ(t)X∆(t) = A(t)ΦA(t, τ)L(τ)− L∆(t)X(t)

= A(t)ΦA(t, τ)L(τ)− L∆(t)L−1(t)ΦA(t, τ)L(τ)

= [A(t)− L∆(t)L−1(t)]ΦA(t, τ)L(τ).

Multiplying both sides by Lσ−1
(t) and noting (5.5) and (5.7),

X∆(t) = [Lσ−1

(t)A(t)− Lσ−1

(t)L∆(t)L−1(t)]ΦA(t, τ)L(τ)

= [Lσ−1

(t)A(t)L(t)− Lσ−1

(t)L∆(t)]L−1(t)ΦA(t, τ)L(τ)

= G(t)X(t).
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Since this is valid for any τ ∈ T, (5.6) is the transition matrix for (5.4). Additionally,

if the initial value specified in (5.4) was not the identity matrix, i.e. Z(t0) = Z0 6= I,

then the solution is X(t) = ΦG(t, τ)Z0.

5.1 Preservation of Uniform Stability

Theorem 5.2. Suppose that z(t) = L−1(t)x(t) is a Lyapunov transformation. Then

the system (5.1) is uniformly stable if and only if

z∆(t) =
[
Lσ−1

(t)A(t)L(t)− Lσ−1

(t)L∆(t)
]
z(t), z(t0) = z0, (5.8)

is uniformly stable.

Proof. Equations (5.1) and (5.8) are related by the change of variables z(t) = L−1(t)x(t).

By Theorem 5.1, the relationship between the two transition matrices is

ΦG(t, t0) = L−1(t)ΦA(t, t0)L(t0).

Suppose that (5.1) is uniformly stable. Then there exists a γ > 0 such that

||ΦA(t, t0)|| ≤ γ for all t, t0 ∈ T with t ≥ t0. By Lemma 5.2, with η and ρ as in (5.2)

and (5.3), we have

||ΦG(t, t0)|| = ||L−1(t)ΦA(t, t0)L(t0)||

≤ ||L−1(t)|| ||ΦA(t, t0)|| ||L(t0)||

≤ γρn

η
= γG,

for all t, t0 ∈ T with t ≥ t0. By Theorem 3.1, since ||ΦG(t, t0)|| ≤ γG, the system (5.8)

is uniformly stable. The converse is similar.

5.2 Preservation of Uniform Exponential Stability

Theorem 5.3. Suppose that z(t) = L−1(t)x(t) is a Lyapunov transformation. Then

the system (5.1) is uniformly exponentially stable if and only if
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z∆(t) =
[
Lσ−1

(t)A(t)L(t)− Lσ−1

(t)L∆(t)
]
z(t), z(t0) = z0, (5.9)

is uniformly exponentially stable.

Proof. Equations (5.1) and (5.9) are related by the change of variables z(t) = L−1(t)x(t).

By Theorem 5.1, the relationship between the two transition matrices is

ΦG(t, t0) = L−1(t)ΦA(t, t0)L(t0).

Suppose that (5.1) is uniformly exponentially stable. Then there exist constants

λ, γ > 0 with −λ ∈ R+ such that ||ΦA(t, t0)|| ≤ γe−λ(t, t0) for all t ≥ t0 with t, t0 ∈ T.

Then by Lemma 5.2, with η and ρ as in (5.2) and (5.3), we have

||ΦG(t, t0)|| = ||L−1(t)ΦA(t, t0)L(t0)||

≤ ||L−1(t)|| ||ΦA(t, t0)|| ||L(t0)||

≤ γρn

η
e−λ(t, t0) = γGe−λ(t, t0),

for all t, t0 ∈ T with t ≥ t0.

By Theorem 3.2, since ||ΦG(t, t0)|| ≤ γGe−λ(t, t0), the system (5.9) is uniformly

exponentially stable. The converse is similar.

Corollary 5.1. Suppose that z(t) = L−1(t)x(t) is a Lyapunov transformation. Then

the system (5.1) is uniformly asymptotically stable if and only if

z∆(t) =
[
Lσ−1

(t)A(t)L(t)− Lσ−1

(t)L∆(t)
]
z(t), z(t0) = z0 (5.10)

is uniformly asymptotically stable.

Proof. Suppose (5.10) is uniformly asymptotically stable. By Theorem 3.4, (5.10) is

uniformly exponentially stable and Theorem 5.3 now implies that (5.1) is uniformly

exponentially stable. Thus, by Theorem 3.4, the linear dynamic system (5.1) is

uniformly exponentially stable if and only if it is uniformly asymptotically stable.

The converse is similar.



CHAPTER SIX

Floquet Theory

We begin with definitions that will be used throughout the remainder of the

dissertation.

Definition 6.1. Let p ∈ [0,∞). Then the time scale T is p-periodic if we have the

following:

(i) t ∈ T implies that t + p ∈ T,

(ii) µ(t) = µ(t + p),

for all t ∈ T.

Definition 6.2. An n× n-matrix valued function A : T→ Rn×n is p-periodic if A(t) =

A(t + p) for all t ∈ T.

We will henceforth assume that the time scale we are working with is p-periodic.

6.1 The Homogeneous Equation

We consider the regressive time varying linear dynamic initial value problem

x∆(t) = A(t)x(t), x(t0) = x0 (6.1)

where A(t) ∈ R(T,Rn×n) and p-periodic for all t ∈ T.

We note that in general, it is not necessary that the period of A(t) be equal to

the period of the time scale on which the system is being analyzed. We let the period

of the time scale and the function A(t) be equal for simplicity.

Lemma 6.1. Suppose that T is a p-periodic time scale and R ∈ R(T,Cn×n). Then the

solution of the regressive dynamic matrix initial value problem

Z∆(t) = RZ(t), Z(t0) = Z0, (6.2)
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is unique up to a period p shift. That is, eR(t, t0) = eR(t + kp, t0 + kp), for all t ∈ T
and k ∈ N0.

Proof. By [6], the unique solution to (6.2) is eR(t, t0)Z0. Observe

e∆
R(t, t0)Z0 = R eR(t, t0)Z0,

and

eR(t, t0)|t=t0Z0 = eR(t0, t0)Z0 = Z0.

Now we show that eR(t, t0) = eR(t + kp, t0 + kp). We show this by observing that

eR(t + kp, t0 + kp)Z0 also solves the matrix initial value problem (6.2). We see

e
∆t+kp

R (t + kp, t0 + kp)Z0 = R eR(t + kp, t0 + kp)

and

eR(t + kp, t0 + kp)|t+kp=t0+kp = eR(t + kp, t0 + kp)|t=t0 = eR(t0 + kp, t0 + kp)Z0 = Z0.

By [6], we have uniqueness of solutions to the matrix IVP (6.2). Thus,

eR(t + kp, t0 + kp) = eR(t, t0), for all t ∈ T and k ∈ N0.

Therefore, eR can be shifted by integer multiples of p.

The next theorem is the unified and extended time scale version of the Floquet

decomposition for p-periodic time varying linear dynamic systems.

Theorem 6.1 (The Unified Floquet Decomposition for Time Scales). Suppose that there

exists an n× n constant regressive matrix R such that eR(p + t0, t0) = ΦA(p + t0, t0),

where ΦA is the transition matrix for the p-periodic system (6.1). Then the transition

matrix for (6.1) can be written in the form

ΦA(t, τ) = L(t)eR(t, τ)L−1(τ) for all t, τ ∈ T, (6.3)

where R ∈ Cn×n is a constant matrix and L(t) ∈ C1
rd(T,Rn×n) is a p-periodic Lya-

punov transformation. We refer to (6.3) as the Floquet decomposition for ΦA.
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Proof. We begin by defining the constant matrix R as the solution to the equation

eR(p + t0, t0) = ΦA(p + t0, t0),

which may require either taking the natural logarithm or obtaining the invertible pth

root of the real-valued invertible constant matrix ΦA(p + t0, t0). Thus, it is possible

that a complex R is obtained. Define the matrix L(t) by

L(t) = ΦA(t, t0)e
−1
R (t, t0). (6.4)

It follows from this definition that L(t) ∈ C1
rd(T,Rn×n) and is invertible at each t ∈ T.

It is easily seen that

ΦA(t, t0) = L(t)eR(t, t0)

yields

ΦA(t0, t) = e−1
R (t, t0)L

−1(t) = eR(t0, t)L
−1(t)

which proves the claim

ΦA(t, τ) = L(t)eR(t, τ)L−1(τ).

We conclude by showing that L(t) is p-periodic. By (6.4) and Lemma 6.1,

L(t + p) = ΦA(t + p, t0)e
−1
R (t + p, t0)

= ΦA(t + p, t0 + p)ΦA(t0 + p, t0)eR(t0, t + p)

= ΦA(t + p, t0 + p)ΦA(t0 + p, t0)eR(t0, t0 + p)eR(t0 + p, t + p)

= ΦA(t + p, t0 + p)ΦA(t0 + p, t0)e
−1
R (t0 + p, t0)eR(t0 + p, t + p)

= ΦA(t + p, t0 + p)e−1
R (t + p, t0 + p)

= ΦA(t + p, t0 + p)e−1
R (t, t0).

Letting t′ = t + p, we see that ΦA(t′, t0 + p) is a solution to the matrix dynamic

equation

Φ
∆t′
A (t′, t0+p) = A(t′)ΦA(t′, t0+p) = A(t+p)ΦA(t+p, t+0+p) = A(t)ΦA(t+p, t0+p)
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with initial conditions

ΦA(t′, t0 + p)|t′=t0+p = ΦA(t + p, t0 + p)|t=t0 = ΦA(t0 + p, t0 + p) = I.

But now ΦA(t, t0) is another solution to the same matrix dynamic initial value prob-

lem. Since the solutions to initial value problems are unique, we have

ΦA(t + p, t0 + p) = ΦA(t, t0).

Thus,

L(t + p) = ΦA(t + p, t0 + p)e−1
R (t, t0) = ΦA(t, t0)e

−1
R (t, t0) = L(t).

In the following theorem we show that given any p-periodic nonautonomous

system as in (6.1), we can create a corresponding autonomous system via the Floquet

decomposition of the transition matrix for the nonautonomous system, which we have

shown preserves the stability characteristics.

Theorem 6.2. Let ΦA(t, t0) = L(t)eR(t, t0) as in Theorem 6.1. Then x(t) = ΦA(t, t0)x0

is a solution of the p-periodic nonautonomous system (6.1) if and only if z(t) =

L−1(t)x(t) is a solution of the autonomous system

z∆(t) = R z(t), z(t0) = x0. (6.5)

Proof. Suppose that x(t) is a solution to (6.1). Then

x(t) = ΦA(t, t0)x0 = L(t)eR(t, t0)x0.

If we define

z(t) = L−1(t)x(t) = L−1(t)L(t)eR(t, t0)x0 = eR(t, t0)x0,

then it follows that z(t) is a solution of (6.5).
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Now suppose that z(t) = L−1(t)x(t) is a solution of the autonomous system

(6.5). By [6], the solution is z(t) = eR(t, t0)x0. By definition of z(t) we have x(t) =

L(t)z(t). It follows that

x(t) = L(t)eR(t, t0)x0 = ΦA(t, t0)x0,

so x(t) is a solution of (6.1).

We now give conditions on the transition matrix of the p-periodic nonau-

tonomous system (6.1) and the corresponding solution to the autonomous system

that guarantees the existence of a periodic solution to (6.1).

Theorem 6.3. Given any t0 ∈ T, there exists an initial state x(t0) = x0 6= 0 such

that the solution of (6.1) is p-periodic if and only if at least one of the eigenvalues of

eR(t0 + p, t0) = ΦA(t0 + p, t0) is 1.

Proof. Suppose that given an initial time t0 with x(t0) = x0 6= 0, the solution x(t) is

p-periodic. By Theorem 6.1, there exists a Floquet decomposition of x given by

x(t) = ΦA(t, t0)x0 = L(t)eR(t, t0)L
−1(t0)x0.

Furthermore,

x(t + p) = L(t + p)eR(t + p, t0)L
−1(t0)x0 = L(t)eR(t + p, t0)L

−1(t0)x0.

Since x(t) = x(t + p) and L(t) = L(t + p) for each t ∈ T, we have

eR(t, t0)L
−1(t0)x0 = eR(t + p, t0)L

−1(t0)x0,

which implies

eR(t, t0)L
−1(t0)x0 = eR(t + p, t0 + p)eR(t0 + p, t0)L

−1(t0)x0.

Since eR(t + p, t0 + p) = eR(t, t0),

eR(t, t0)L
−1(t0)x0 = eR(t, t0)eR(t0 + p, t0)L

−1(t0)x0,
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and thus

L−1(t0)x0 = eR(t0 + p, t0)L
−1(t0)x0.

Since L−1(t0)x0 6= 0, we see that L−1(t0)x0 is an eigenvector of the matrix eR(t0+p, t0)

corresponding to an eigenvalue of 1.

Now suppose 1 is an eigenvalue of eR(t0 + p, t0) with corresponding eigenvector

z0. Then z0 is real-valued and nonzero. For any t0 ∈ T, z(t) = eR(t, t0)z0 is p-

periodic. Since 1 is an eigenvalue of eR(t0 + p, t0) with corresponding eigenvector z0

and eR(t + p, t0 + p) = eR(t, t0),

z(t + p) = eR(t + p, t0)z0

= eR(t + p, t0 + p)eR(t0 + p, t0)z0

= eR(t + p, t0 + p)z0

= eR(t, t0)z0

= z(t).

Using the Floquet decomposition from Theorem 6.1 and setting x0 = L(t0)z0, we

obtain the nontrivial solution of (6.1). Then

x(t) = ΦA(t, t0)x0 = L(t)eR(t, t0)L
−1(t0)x0 = L(t)eR(t, t0)z0 = L(t)z(t),

which is p-periodic since L(t) and z(t) are p-periodic.

6.2 The Nonhomogeneous Equation

We now consider the nonhomogeneous regressive time varying linear dynamic

initial value problem

x∆(t) = A(t)x(t) + f(t), x(t0) = x0, (6.6)

where A(t) ∈ R(T,Rn×n), f(t) ∈ Cprd(T,Rn) ∩R(T,Rn) and both are p-periodic for

all t ∈ T.
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Lemma 6.2. A solution x(t) of equation (6.6) is p-periodic if and only if x(t0 + p) =

x(t0).

Proof. Suppose that x(t) is p-periodic. Then by definition of a periodic function,

x(t0 + p) = x(t0).

Now suppose that there exists a solution of (6.6) such that x(t0 + p) = x(t0).

Define z(t) = x(t + p) − x(t). By assumption and construction of z(t), we have

z(t0) = 0. Furthermore,

z∆(t) = [A(t + p)x(t + p) + f(t + p)]− [A(t)x(t) + f(t)]

= A(t) [x(t + p)− x(t)]

= A(t)z(t).

By uniqueness of solutions, we see that z(t) ≡ 0 for all t ∈ T. Thus, x(t) = x(t + p)

for all t ∈ T.

The next theorem uses Lemma 6.2 to develop criteria for the existence of p-

periodic solutions for any p-periodic vector-valued function f(t).

Theorem 6.4. For all t0 ∈ T and for all p-periodic f(t), there exists an initial state

x(t0) = x0 such that the solution of (6.6) is p-periodic if and only if there does not

exist a nonzero z(t0) = z0 with t0 ∈ T such that the p-periodic homogeneous initial

value problem

z∆(t) = A(t)z(t), z(t0) = z0, (6.7)

has a p-periodic solution.

Proof. For any t0, x(t0) = x0 and p-periodic vector-valued function f(t), by Theo-

rem 2.7 the solution of (6.6) is

x(t) = ΦA(t, t0)x0 +

∫ t

t0

ΦA(t, σ(τ))f(τ)∆τ.
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By Lemma 6.2, x(t) is p-periodic if and only if x(t0) = x(t0 + p) which is equivalent

to

[I − ΦA(t0 + p, t0)] x0 =

∫ t0+p

t0

ΦA(t0 + p, σ(τ))f(τ)∆τ. (6.8)

By Theorem 6.3, we must show the algebraic equation (6.8) has a solution for x0

given any t0 and any p-periodic f(t) if and only if eR(t0 + p, t0) has no eigenvalues

equal to one.

Let eR(τ + p, τ) = ΦA(τ + p, τ) for some τ ∈ T, and suppose that there are no

eigenvalues equal to one. This is equivalent to

det [I − ΦA(τ + p, τ)] 6= 0. (6.9)

Since ΦA is invertible, (6.9) is equivalent to

0 6= det [ΦA(t0 + p, τ + p) (I − ΦA(τ + p, τ)) ΦA(τ, t0)]

= det [ΦA(t0 + p, τ + p)ΦA(τ, t0)− ΦA(t0 + p, t0)] .

Since ΦA(t0 + p, τ + p) = ΦA(t0, τ), as shown is Theorem 6.1, (6.9) is equivalent to

the invertibility of [I −ΦA(τ + p, τ)]. Thus, (6.8) has a solution x0 for any t0 and for

any p-periodic f(t).

Now suppose that (6.8) has a solution for every t0 and every p-periodic f(t).

Given an arbitrary t0 ∈ T, corresponding to any n×1 vector f0, we define a regressive

p-periodic vector valued function f(t) ∈ Cprd(T,Rn) by

f(t) = ΦA(σ(t), t0 + p)f0, t ∈ [t0, t0 + p)T , (6.10)

extending this to the entire time scale T using the periodicity.

By construction of f(t), we have

∫ t0+p

t0

ΦA(t0 + p, σ(τ))f(τ)∆τ =

∫ t0+p

t0

f0∆τ = pf0.

Thus, (6.8) becomes

[I − ΦA(t0 + p, t0)] x0 = pf0. (6.11)
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For any vector-valued function f(t) that is constructed as in (6.10) and thus for any

corresponding f0, (6.11) has a solution for x0 by assumption. Therefore,

det [I − ΦA(t0 + p, t0)] 6= 0,

which is equivalent to (6.9). Thus, eR(t0 + p, t0) = ΦA(t0 + p, t0) has no eigenvalue of

equal to 1. By Theorem 6.3, (6.7) has no periodic solution.

6.3 Examples

6.3.1 Discrete Time Example

Consider the time scale T = Z and the regressive (on Z) time varying matrix

A(t) =




−1 2+(−1)t

2

2+(−1)t

2
−1




which have periods of 1 and 2, respectively. It can be verified that the transition

matrix for the homogeneous periodic discrete linear system of difference equations

∆X(t) =




−1 2+(−1)t

2

2+(−1)t

2
−1


 X(t)

is given by

ΦA(t, 0) =
1

2t+1




(
√

3)t + (−√3)t (
√

3)t+1 + (−√3)t+1

(
√

3)t+1 + (−√3)t+1 (
√

3)t + (−√3)t


 .

A matrix R′, as in Theorem 6.1, that satisfies the equation

eR′(2, 0) = ΦA(2, 0) =
1

23




(
√

3)2 + (−√3)2 (
√

3)3 + (−√3)3

(
√

3)3 + (−√3)3 (
√

3)2 + (−√3)2




which simplifies to

eR′(2, 0) = (I + R′)2 =
1

8




6 0

0 6


 =




3
4

0

0 3
4



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is

R′ =




√
3

2
− 1 0

0
√

3
2
− 1


 .

Again, by Theorem 6.1, the 2-periodic matrix L′(t) is given by

L′(t) = ΦA(t, 0)e−1
R′ (t, 0)

= ΦA(t, 0)(I + R′)−t

=
1

2t+1




(
√

3)t + (−√3)t (
√

3)t+1 + (−√3)t+1

(
√

3)t+1 + (−√3)t+1 (
√

3)t + (−√3)t







(√
3

2

)−t

0

0
(√

3
2

)−t




=
1

2




1 + (−1)t
√

3 + (−1)t(−√3)
√

3 + (−1)t(−√3) 1 + (−1)t


 .

This examples illustrates how the unified Floquet theorem handles the case

of a completely isolated time scale T = Z. In this case, since the time scale has

constant graininess, the matrix R is computed by taking the pth root of the matrix

ΦA(t0 + p, t0) and subtracting the identity matrix, i.e. R = (ΦA(2, 0)
1
2 − I). For any

time scale with constant positive graininess h and period p,

R =
1

h
(ΦA(t0 + p, t0)

h
p − I).

6.3.2 Continuous Time Example

Consider the time scale T = R and the time varying matrix

A(t) =




−1 0

sin(t) 0




which has a period of 2π. It can be verified that the transition matrix for the homo-

geneous periodic linear system of differential equations

Ẋ(t) =




−1 0

sin(t) 0


 X(t)
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is given by

ΦA(t, 0) =




e−t 0

1
2
− e−t(cos(t)+sin(t))

2
1


 .

A matrix R′, as in Theorem 6.1, that satisfies the equation

eR′(2π, 0) = e2πR′ = ΦA(2π, 0) =




e−2π 0

1
2
− e−2π

2
1




is

R′ =
1

2π
ln ΦA(2π, 0) =



−1 0

1
2

0


 .

We can now conclude that

eR′t =




e−t 0

1
2
− e−t

2
1


 and thus e−R′t =




et 0

1
2
− et

2
1


 .

Again, by Theorem 6.1, the 2π-periodic matrix L′(t) is given by

L′(t) = ΦA(t, 0)e−1
R′ (t, 0)

= ΦA(t, 0)e−R′t

=




e−t 0

1
2
− e−t(cos(t)+sin(t))

2
1







et 0

1
2
− et

2
1




=




1 0

1
2
− cos(t)+sin(t)

2
1


 .

This examples demonstrates how the unified Floquet theorem handles the case

of the time scale T = R. In this case, since the time scale has a constant graininess

of µ(t) ≡ 0, the matrix R is computed by taking the natural logarithm of the matrix

ΦA(2π, 0) and multiplying by 1
2π

, i.e. R = 1
2π

ln ΦA(2π, 0). In general, for the time

scale T = R, and matrix A(t) with period p,

R =
1

p
ln ΦA(t0 + p, t0).
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6.3.3 Time Scale Example

We start by stating a lemma from [6]. It will be used in finding the matrix R

in the following example.

Lemma 6.3. The initial value problem

y∆(t) = λ1(t)y(t) + eλ2(t)(t, t0), y(t0) = 0 (6.12)

has the solution

y(t) =

∫ t

t0

eλ1(t)(t, σ(τ))eλ2(τ)(τ, t0)∆τ. (6.13)

Consider the time scale T = P1,1 and the regressive (on P1,1) time varying

matrix

A(t) =



−3 + sin(2πt) 1

0 −3




which have periods of 2 and 1, respectively. Note that it is correct to say the matrix

A(t) is 2-periodic as well. It is tedious but straightforward to verify that the transition

matrix for the homogeneous periodic dynamic linear system

X∆(t) =



−3 + sin(2πt) 1

0 −3


 X(t) (6.14)

is given by

ΦA(t, 0) =




e−3+sin(2πτ)(t, 0)
∫ t

0
e−3+sin(2πτ)(t, σ(τ))e−3(τ, 0)∆τ

0 e−3(t, 0)


 . (6.15)

Following the Putzer Algorithm in [6], we see that the matrix R′ that satisfies

eR′(2, 0) = ΦA(2, 0) =



−2e−3

∫ 2

0
e−3+sin(2πt)(t, σ(τ))e−3(τ, 0)∆τ

0 −2e−3




as in Theorem 6.1 is

R′ =



−3 C

0 −3


 ,
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where C = −e3
∫ 2

0
e−3+sin(2πτ)(2, σ(s))e−3(s, 0)∆s and

e−3+sin(2πτ)(2, σ(s)) := exp

(∫ 2

σ(s)

1

µ(τ)
Log(1 + µ(τ)(−3 + sin(2πτ)))∆τ

)
,

which is why we have sin(2πτ) in the integral. Since eR′(2, 0) = ΦA(2, 0), we see

eR′(t, 0) =




e−3(t, 0) C
∫ t

0
e−3(t, σ(τ))e−3(τ, 0)∆τ

0 e−3(t, 0)


 ,

and consequently

e−1
R′ (t, 0) =

1

(e−3(t, 0))2




e−3(t, 0) −C
∫ t

0
e−3(t, σ(τ))e−3(τ, 0)∆τ

0 e−3(t, 0)


 .

Again, by Theorem 6.1, the 2-periodic matrix L′(t) is given by

L′(t) = ΦA(t, 0)e−1
R′ (t, 0)

=
1

(e−3(t, 0))2




e−3+sin(2πt)(t, 0)
∫ t

0
e−3+sin(2πτ)(t, σ(τ))e−3(τ, 0)∆τ

0 e−3(t, 0)


 ·




e−3(t, 0) −C
∫ t

0
e−3(t, σ(τ))e−3(τ, 0)∆τ

0 e−3(t, 0)


 ,

which is obviously 2-periodic on P1,1. Thus, the Floquet decomposition of the tran-

sition matrix is seen to be ΦA(t, 0) = L′(t)eR′(t, 0).

The unified Floquet theorem can also be used on a time scale with nonconstant

graininess. In this case, since the time scale has a nonconstant graininess, the matrix

R is computed using the Putzer Algorithm. There does not currently exist a closed

form for the matrix R when working on a time scale with nonconstant graininess.



CHAPTER SEVEN

Floquet Multipliers, Floquet Exponents, and a Spectral Mapping Theorem

Suppose that ΦA(t, t0) is the transition matrix and Φ(t) is the fundamental

matrix at t = τ (i.e. Φ(τ) = I) for the system (6.1). Then we can write any

fundamental matrix Ψ(t) as

Ψ(t) = Φ(t)Ψ(τ) or Ψ(t) = ΦA(t, t0)Ψ(t0).

Definition 7.1. Let x0 ∈ Rn be a nonzero vector and Ψ(t) be any fundamental matrix

for the system (6.1). The vector solution of the system with initial condition x(t0) =

x0 is given by x(t) = ΦA(t, t0)x0 = Ψ(t)Ψ−1(t0)x0. The operator M : Rn → Rn given

by

M(x0) = ΦA(t0 + p, t0)x0 = Ψ(t0 + p)Ψ−1(t0)x0

is called a monodromy operator. The eigenvalues of the monodromy operator are

called the Floquet (or characteristic) multipliers of the system (6.1).

The following theorem establishes that characteristic multipliers are nonzero

complex numbers intrinsic to the periodic system—they do not depend on the choice

of the fundamental matrix. This a generalization of the result dealing with the eigen-

values and invertibility of monodromy operators in [10].

Theorem 7.1. The following statements are valid for the system (6.1).

(1) Every monodromy operator is invertible. In particular, every characteristic

multiplier is nonzero.

(2) If M1 and M2 are monodromy operators, then they have the same eigenval-

ues. In particular, there are exactly n characteristic multipliers, counting

multiplicities.
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Proof. To prove (1), observe that by the definition of the monodromy operator, it is

invertible for all t ∈ T with t ≥ t0.

To prove (2), we develop a property for fundamental matrices from Theorem 6.3.

Let Ψ1(t) be a fundamental matrix for the p-periodic system (6.1) at t = τ . Define

Υ(t) := Ψ1(t + p) and C := Ψ−1
1 (τ)Ψ1(τ + p). Then Υ(τ) = Ψ1(τ + p) = Ψ1(τ)C and

by uniqueness of solutions, Υ(t) = Ψ1(t + p) = Ψ1(t)C. The property that follows is

Ψ1(t + p) = Ψ1(t)C = Ψ1(t)Ψ
−1
1 (τ)Ψ1(τ + p).

If Ψ2(t) is another fundamental matrix, then Ψ2(t) = Ψ1(t)Ψ2(τ) and Ψ2(t) =

ΦA(t, t0)Ψ2(t0).

Consider the monodromy operator given by M(x0) = Ψ2(t0 + p)Ψ−1
2 (t0)x0, and

note that

Ψ2(t0 + p)Ψ−1
2 (t0) = Ψ1(t0 + p)Ψ2(τ)Ψ−1

2 (τ)Ψ−1
1 (t0)

= Ψ1(t0 + p)Ψ−1
1 (t0)

= Ψ1(t0)Ψ
−1
1 (τ)Ψ1(τ + p)Ψ−1

1 (t0)

= Ψ1(t0)Ψ1(τ + p)Ψ−1
1 (t0),

or in terms of the transition matrix ΦA(t, t0),

Ψ2(t0 + p)Ψ−1
2 (t0) = ΦA(t0 + p, t0)Ψ2(t0)Ψ

−1
2 (t0)Φ

−1
A (t0, t0) = ΦA(t0 + p, t0).

In particular, the eigenvalues of the operator Ψ1(τ+p) are the same as the eigen-

values of the monodromy operator M . Similarly, in terms of the transition matrix,

the eigenvalues of ΦA(t0 + p, t0) are the same as the eigenvalues of the monodromy

operator M . Thus, all monodromy operators have the same eigenvalues.

With the Floquet normal form ΦA(t, t0) = Ψ1(t)Ψ
−1
1 (t0) = L(t)eR(t, t0)L

−1(t0)

of the transition matrix for the system (6.1) one on hand, and the monodromy oper-
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ator representation

M(x0) = ΦA(t0 + p, t0)x0 = Ψ1(t0 + p)Ψ−1
1 (t0)x0

on the other, together we conclude

ΦA(t0 + p, t0) = Ψ1(t0 + p)Ψ−1
1 (t0) = L(t0)eR(t0 + p, t0)L

−1(t0).

Thus, the characteristic multipliers of the system are the eigenvalues of the matrix

eR(t0 + p, t0). The number γ ∈ C is a Floquet (or characteristic) exponent of the

p-periodic system (6.1) if λ is a Floquet multiplier and eγ(t0 + p, t0) = λ.

Lemma 7.1. Let A be an n×n constant matrix and T be any nonsingular n×n matrix.

Then eTAT−1(t, t0) = TeA(t, t0)T
−1.

Proof. Following the Putzer Algorithm, suppose λ1, . . . , λn are the eigenvalues of A,

then

eA(t, t0) =
n−1∑
i=0

ri+1(t)Pi,

where r(t) := (r1(t), r2(t), . . . , rn(t)) is the solution of the IVP

r∆(t) =




λ1 0 0 · · · 0

1 λ2 0
. . . 0

0 1 λ3
. . .

...

...
. . . . . . . . . 0

0 · · · 0 1 λn




, r(t0) =




1

0

0

...

0




,

and the P -matrices P0, P1, . . . , Pn are recursively defined by P0 = I and

Pk+1 = (A− λk+1I)Pk for 0 ≤ k ≤ n− 1.

Since the matrices A and TAT−1 have the same eigenvalues, the corresponding

(scalar) functions ri(t) are identical.
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Suppose

eA(t, t0) =
n−1∑
i=0

ri+1(t)Pi, and eTAT−1(t, t0) =
n−1∑
i=0

ri+1(t)Qi.

To conclude the proof, we show that TPk+1T
−1 = Qk+1 for all 0 ≤ k ≤ n − 1. For

any 0 ≤ k ≤ n− 1,

TPk+1T
−1 = T (A− λk+1I)(A− λkI) · · · (A− λ1I)T−1

= T (A− λk+1I)T−1T (A− λkI)T−1 · · ·T (A− λ1I)T−1

= (TA− λk+1T )T−1T (A− λkI)T−1 · · ·T (At−1 − λ1T
−1)

= (TAT−1 − λk+1I)(TAT−1 − λkI) · · · (TAT−1 − λ1I)

= Qk+1.

Hence,

TeA(t, t0)T
−1 = T

(
n−1∑
i=0

ri+1(t)Pi

)
T−1

=
n−1∑
i=0

ri+1(t)TPiT
−1

=
n−1∑
i=0

ri+1(t)Qi

= eTAT−1(t, t0).

The next result is an interesting spectral mapping theorem for time scales. Let

spec(A) denote the spectrum of A, that is, the set of all λ ∈ C such that λI − A is

singular. Then, for our finite dimensional matrix A, spec(A) coincides with the set

of eigenvalues of A. The fact we obtain from Theorem 7.2 is that espec(A) = spec(eA).

Theorem 7.2 (Spectral Mapping Theorem for Time Scales). Suppose that A is an

n × n matrix with eigenvalues λ1, . . . , λn, repeated according to multiplicities. Then

λk
1, . . . , λ

k
n are the eigenvalues of Ak and the eigenvalues of eA are eλ1 , . . . , eλn.
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Proof. By induction for the dimension n, we start by noting that the theorem is valid

for 1× 1 matrices. Suppose that it is true for all (n− 1)× (n− 1) matrices. Take λ1

and let v 6= 0 denote a corresponding eigenvector such that Av = λ1v. Let e1, . . . , en

denote the usual basis of Cn. There exists a nonsingular matrix S such that Sv = e1.

Thus we have SAS−1e1 = λ1e1, and the matrix SAS−1 has the block form

SAS−1 =




λ1 ∗
0 Ã


 .

The matrix SAkS−1 has the same block form, only with block diagonal elements

λk
1 and Ãk. Clearly, the eigenvalues of this block matrix are λk

1 together with the

eigenvalues of Ãk. By induction, the eigenvalues of Ãk are the kth powers of the

eigenvalues of Ã. This proves the second statement of the theorem.

We note that the structure of each Pi in Lemma 7.1 depends explicitly on the

two matrices A and I. Since we chose the matrix S so that SAS−1 is block diagonal,

by construction, the matrix eSAS−1 is also block diagonal, with block diagonal elements

eλ1 and eÃ, which can be verified by the Putzer Algorithm and time scale integration

by parts. Using induction, it follows that the eigenvalues of eÃ are eλ2 , . . . , eλn . Thus,

the eigenvalues of eSAS−1 = SeAS−1 are eλ1 , . . . , eλn .

We know that the eigenvalues of the matrix eR(t0 +p, t0) are the Floquet multi-

pliers. Theorem 7.2 also helps us answer affirmatively the question of whether or not

the eigenvalues of the matrix R in the Floquet decomposition ΦA(t, t0) = L(t)eR(t, t0)

are Floquet exponents. However, in Theorem 7.3, we will see that although the Flo-

quet exponents are the eigenvalues of the matrix R, they are not unique.

We first introduce the definition of a Hilger purely imaginary number.

Definition 7.2. Let −π
h

< ω ≤ π
h
. The Hilger purely imaginary number

◦
ıω is defined

by

◦
ıω =

eiωh − 1

h
.
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For z ∈ Ch, we have that
◦
ıImh(z) ∈ Ih. Also, when h = 0,

◦
ıω = iω.

Theorem 7.3 (Nonuniqueness of Floquet Exponents). Suppose that γ ∈ R is a (possi-

bly complex ) Floquet exponent, λ is the corresponding characteristic multiplier of the

p-periodic Floquet system (6.1) such that eγ(t0 +p, t0) = λ, and T is a p-periodic time

scale. Then γ ⊕ ◦
ı 2πk

p
is also a Floquet exponent for all k ∈ Z.

Proof. Observe that for any k ∈ Z and t0 ∈ T,

e
γ⊕◦ı 2πk

p

(t0 + p, t0) = eγ(t0 + p, t0)e◦ı 2πk
p

(t0 + p, t0)

= eγ(t0 + p, t0) exp

(∫ t0+p

t0

Log(1 + µ(τ)
◦
ı 2πk

p
)

µ(τ)
∆τ

)

= eγ(t0 + p, t0) exp

(∫ t0+p

t0

Log(1 + µ(τ) ei2πkµ(τ)/p−1
µ(τ)

)

µ(τ)
∆τ

)

= eγ(t0 + p, t0) exp

(∫ t0+p

t0

Log(ei2πkµ(τ)/p)

µ(τ)
∆τ

)

= eγ(t0 + p, t0) exp

(∫ t0+p

t0

i2πkµ(τ)/p

µ(τ)
∆τ

)

= eγ(t0 + p, t0) exp

(∫ t0+p

t0

i2πk

p
∆τ

)

= eγ(t0 + p, t0)e
i2πk

= eγ(t0 + p, t0).

Lemma 7.2. Let T be a p-periodic time scale and k ∈ Z. Then functions e◦
ı 2πk

p

(t, t0)

and eª◦ı 2πk
p

(t, t0) are periodic functions.

Proof. Let t ∈ T. Then

e◦
ı 2πk

p

(t + p, t0) = e
i2πk(t+p−t0)

p = e
i2πk(t−t0)

p e
i2πkp

p = e
i2πk(t−t0)

p = e◦
ı 2πk

p

(t, t0).

Therefore, e◦
ı 2πk

p

(t, t0) is a p-periodic function. The fact that eª◦ı 2πk
p

(t, t0) is p-periodic

follows easily from the relationship eª◦ı 2πk
p

(t, t0) = e◦
ı 2πk

p

(t0, t).
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Lemma 7.3. If γ is a characteristic exponent for the system (6.1) and ΦA(t, t0) is

the transition matrix, then ΦA has the Floquet decomposition ΦA(t, t0) = L(t)eR(t, t0)

such that γ is an eigenvalue of R.

Proof. Let L′(t)eR′(t, t0) be a Floquet decomposition of ΦA(t, t0). By definition of the

characteristic exponents, there is a characteristic multiplier λ such that eγ(p+t0, t0) =

λ, and, by Theorem 7.2, there is an eigenvalue of ν of R′ such that eν(p + t0, t0) = λ.

Also, by Lemma 7.3, there is some integer k such that ν = γ ⊕ ◦
ı 2πk

p
.

Define R := R′ª ◦
ı 2πk

p
I (which is equivalent to R′ := R⊕ ◦

ı 2πk
p

I and in this case

since
◦
ı 2πk

p
I is a diagonal matrix, R′ :=

◦
ı 2πk

p
I⊕R) and L(t) := L′(t)e◦

ı 2πk
p

I
(t, t0). Then

γ is an eigenvalue of R, L is a p-periodic function, and

L(t)eR(t, t0) = L′(t)e◦
ı 2πk

p
I
(t, t0)eR(t, t0) = L′(t)e◦

ı 2πk
p

I⊕R
(t, t0) = L′(t)eR′(t, t0).

It follows that ΦA(t, t0) = L(t)eR(t, t0) is another Floquet decomposition where γ is

an eigenvalue of R.

The following theorem is used to classify the possible types of solutions that

can arise with periodic systems.

Theorem 7.4. If λ is a characteristic multiplier of the p-periodic system (6.1) and

eγ(t0 + p, t0) = λ for some t0 ∈ T, then there exists a (possibly complex ) nontrivial

solution of the form

x(t) = eγ(t, t0)q(t)

where q is a p-periodic function. Moreover, for this solution x(t + p) = λx(t).

Proof. Let ΦA(t, t0) be the transition matrix for (6.1). By Lemma 7.3, there is a

Floquet decomposition ΦA(t, t0) = L(t)eR(t, t0) such that γ is an eigenvalue of R. So

there exists a vector v 6= 0 such that Rv = γv. It follows that eR(t, t0)v = eγ(t, t0)v,

and therefore the solution x(t) := ΦA(t, t0)v can be represented in the form

x(t) = L(t)eR(t, t0)v = eγ(t, t0)L(t)v.
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The solution required by the first statement of the theorem is obtained by defining

q(t) := L(t)v. The second statement of the theorem is proved by the following:

x(t + p) = eγ(t + p, t0)q(t + p)

= eγ(t + p, t0 + p)eγ(t0 + p, t0)q(t)

= eγ(t0 + p, t0)eγ(t + p, t0 + p)q(t)

= eγ(t0 + p, t0)eγ(t, t0)L(t)v

= eγ(t0 + p, t0)x(t)

= λx(t).

Corollary 7.1. Suppose that γ1, . . . , γn are the eigenvalues of R in the Floquet decom-

position ΦA(t, t0) = L(t)eR(t, t0). Then if γ1, . . . , γn ∈ S(T) and there exists a δ > 0

such that 0 < δ−1 ≤ |1 + µ(t)γi| for all i = 1, . . . , n and t ∈ Tκ, then the system (6.1)

is exponentially stable.

Proof. Corollary 7.1 is true by [40, Thm. 5.1(b)].

The next corollary is motivated by [10, Thm. 2.53].

Corollary 7.2. Suppose that λ1, . . . , λn are the Floquet multipliers for the p-periodic

system (6.1).

(1) If all the Floquet multipliers have modulus less than one, then the system

(6.1) is exponentially stable.

(2) If all of the Floquet multipliers have modulus less than or equal to one, then

the system (6.1) is stable.

(3) If at least one of the Floquet multipliers have modulus greater than one, then

the system (6.1) is unstable.

Proof. Parts (1), (2), and (3) are true by Definition 3.7 and Theorem 3.4.
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Theorem 7.5. Suppose that λ1 and λ2 are characteristic multipliers of the p-periodic

system (6.1) and γ1 and γ2 are Floquet exponents such that eγ1(t0 + p, t0) = λ1 and

eγ2(t0 +p, t0) = λ2. If λ1 6= λ2, then there are p-periodic functions q1 and q2 such that

x1(t) = eγ1(t, t0)q1(t) and x2(t) = eγ2(t, t0)q2(t)

are linearly independent solutions.

Proof. As in Lemma 7.3, let ΦA(t, t0) = L(t)eR(t, t0) be such that γ1 is an eigenvalue

of R with corresponding (nonzero) eigenvector v1. Since λ2 is an eigenvalue of the

monodromy matrix ΦA(t0 + p, t0), by Theorem 7.2 there is an eigenvalue γ of R such

that eγ(t0 + p, t0) = λ2 = eγ2(t0 + p, t0). Hence γ2 = γ ⊕ ◦
ı 2πk

p
for some k ∈ Z. Also,

γ 6= γ1 since λ1 6= λ2. Thus, if v2 is a nonzero eigenvector of R corresponding to the

eigenvalue γ, then the eigenvectors v1 and v2 are linearly independent.

As in the proof of Theorem 7.4, there are solutions of the form

x1(t) = eγ1(t, t0)L(t)v1, x2(t) = eγ(t, t0)L(t)v2.

Because x1(t0) = v1 and x2(t0) = v2, these solutions are linearly independent. Finally,

x2 can be written as

x2(t) =

(
e

γ⊕◦ı 2πk
p

(t, t0)

)(
eª◦ı 2πk

p

(t, t0)L(t)v2

)
,

where q2(t) := eª◦ı 2πk
p

(t, t0)L(t)v2.



CHAPTER EIGHT

Examples Revisited

We now revisit the examples from Section 6.3 and show how the Floquet Theory

from Chapter 7 can be applied.

8.1 Discrete Time Example

With the discrete time example, the Floquet exponent is
√

3
2
− 1. It can be

shown that γ = −
√

3
2
− 1 is also a Floquet exponent. However, it is not an eigenvalue

of the original matrix R′. Define R := R′ ª ◦
ıπI, as in Theorem 7.3, with k = 1 and

p = 2. Thus,

R =




√
3

2
− 1 0

0
√

3
2
− 1


ª




◦
ı 2π

2
0

0
◦
ı 2π

2




=




(√
3

2
− 1

)
ª ◦

ıπ 0

0
(√

3
2
− 1

)
ª ◦

ıπ




=



−
√

3
2
− 1 0

0 −
√

3
2
− 1


 .

Then

eR(t, 0) = (I+R)t =




(
−
√

3
2

)t

0

0
(
−
√

3
2

)t


 and e◦

ıπI
(t, 0) = (−I)t =




(−1)t 0

0 (−1)t


 .

Using the original Lyapunov transformation matrix L′(t) from the discrete time ex-

ample, define

L(t) := L′(t)e◦
ı 2πk

2
I
(t, 0) = L′(t)e◦

ıπI
(t, 0),

90
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and thereby obtain

L(t) =
1

2




1 + (−1)t
√

3 + (−1)t(−√3)
√

3 + (−1)t(−√3) 1 + (−1)t







(−1)t 0

0 (−1)t




=
(−1)t

2




1 + (−1)t
√

3 + (−1)t(−√3)
√

3 + (−1)t(−√3) 1 + (−1)t


 .

Thus,

L′(t)eR′(t, 0) = L′(t)e◦
ıπI⊕R

(t, 0) = L′(t)e◦
ıπI

(t, 0)eR(t, 0) = L(t)eR(t, 0),

and so

L′(t)eR′(t, 0) =
1

2




1 + (−1)t
√

3 + (−1)t(−√3)
√

3 + (−1)t(−√3) 1 + (−1)t







(√
3

2

)t

0

0
(√

3
2

)t




=
1

2




1 + (−1)t
√

3 + (−1)t(−√3)
√

3 + (−1)t(−√3) 1 + (−1)t







(−1)t 0

0 (−1)t




·




(
−
√

3
2

)t

0

0
(
−
√

3
2

)t




=
(−1)t

2




1 + (−1)t
√

3 + (−1)t(−√3)
√

3 + (−1)t(−√3) 1 + (−1)t







(
−
√

3
2

)t

0

0
(
−
√

3
2

)t




= L(t)eR(t, 0).

Therefore, ΦA(t, 0) = L(t)eR(t, 0) is another Floquet decomposition of the transition

matrix and γ = (
√

3
2
−1)ª◦

ıπ = −
√

3
2
−1 is a Floquet exponent as well as an eigenvalue

of R which corresponds to the Floquet multiplier λ = 3
4
; that is, e

(
√

3
2
−1)ª◦ıπ(2, 0) =

e
(−

√
3

2
−1)

(2, 0) = 3
4
.
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8.2 Continuous Time Example

Looking at the continuous time example, the original matrix R′ was found to

be

R′ =
1

2π
ln ΦA(2π, 0) =



−1 0

1
2

0


 .

Again define R := R′ ª ◦
ı 2πk

2π
I = R′ ª ◦

ıI = R′ − iI as in Theorem 7.3, with k = 1,

p = 2π, and µ(t) ≡ 0. Thus,

R =



−1 0

1
2

0


−




i 0

0 i


 =



−1− i 0

1
2

−i


 .

Hence

eRt =




e(−1−i)t 0

e−it

2
− e(−1−i)t

2
e−it


 ,

and

ΦA(2π, 0) = e2πR =




e−2π 0

1
2
− e−2π

2
1


 .

Using the original Lyapunov transformation matrix L′(t) from the continuous

time example, we define

L(t) := L′(t)e◦
ı 2πk

2π
I
(t, 0) = L′(t)eiIt,

so that

L(t) =




1 0

1
2
− cos(t)+sin(t)

2
1


 ·




eit 0

0 eit


 =




eit 0

eit

2
− eit(cos(t)+sin(t))

2
eit




and thus

L′(t)eR′t = L′(t)e(iI+R)t = L′(t)eiIteRt = L(t)eRt.
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Now we see

L′(t)eR′t =




1 0

1
2
− cos(t)+sin(t)

2
1







e−t 0

1
2
− e−t

2
1




=




1 0

1
2
− cos(t)+sin(t)

2
1







eit 0

0 eit







e(−1−i)t 0

e−it

2
− e(−1−i)t

2
e−it




=




eit 0

eit

2
− eit(cos(t)+sin(t))

2
eit







e(−1−i)t 0

e−it

2
− e(−1−i)t

2
e−it




= L(t)eRt.

Therefore, ΦA(t, 0) = L(t)eR(t, 0) is another Floquet decomposition of the tran-

sition matrix and γ1 = −1−i and γ2 = −i are Floquet exponents as well as eigenvalues

of R which correspond to the Floquet multipliers λ1 = −2π and λ2 = 1, respectively.

That is, e−2π−2πi = e−2π and e−2πi = 1.

8.3 Time Scale Example

Finally, we consider the time scale example with T = P1,1. The original matrix

R′ was found to be

R′ =



−3 C

0 −3


 ,

where C = −e3
∫ 2

0
e−3+sin(2πτ)(2, σ(s))e−3(s, 0)∆s. Again define R := R′ ª ◦

ı 2πk
2

I =

R′ ª ◦
ıπI, with k = 1 and p = 2, as in Theorem 7.3. Then

R =



−3 C

0 −3


ª




◦
ıπ 0

0
◦
ıπ


 =



−3ª ◦

ıπ C

0 −3ª ◦
ıπ


 ,

and thus,

eR(t, 0) =




e−3ª◦ıπ(t, 0) C
∫ t

0
e−3ª◦ıπ(t, σ(s))e−3ª◦ıπ(s, 0)∆s

0 e−3ª◦ıπ(t, 0)


 .
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Since
∫ 2

0
e−3ª◦ıπ(2, σ(s))e−3ª◦ıπ(s, 0)∆s =

∫ 2

0
e−3(2, σ(s))e−3(s, 0)∆s = −e−3, this sat-

isfies

eR(2, 0) =




e−3ª◦ıπ(2, 0) C
∫ 2

0
e−3ª◦ıπ(2, σ(s))e−3ª◦ıπ(s, 0)∆s

0 e−3ª◦ıπ(2, 0)




=



−2e−3 C

∫ 2

0
e−3(2, σ(s))e−3(s, 0)∆s

0 −2e−3




=



−2e−3

∫ 2

0
e−3+sin(2πτ)(2, σ(s))e−3(s, 0)∆s

0 −2e−3




= ΦA(2, 0).

Next, recall that

L′(t) =
1

(e−3(t, 0))2




e−3+sin(2πt)(t, 0)
∫ t

0
e−3+sin(2πτ)(t, σ(s))e−3(s, 0)∆s

0 e−3(t, 0)


 ·




e−3(t, 0) −C
∫ t

0
e−3(t, σ(s))e−3(s, 0)∆s

0 e−3(t, 0)


 .

Using the original Lyapunov transformation matrix L′(t) from the time scale example,

define

L(t) := L′(t)e ◦
ı2πk

2
I
(t, 0) = L′(t)e◦

ıπI
(t, 0).
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Hence

L(t) =
1

(e−3(t, 0))2




e−3+sin(2πt)(t, 0)
∫ t

0
e−3+sin(2πτ)(t, σ(s))e−3(s, 0)∆s

0 e−3(t, 0)


 ·




e−3(t, 0) −C
∫ t

0
e−3(t, σ(s))e−3(s, 0)∆s

0 e−3(t, 0)


 ·




e◦
ıπ

(t, 0) 0

0 e◦
ıπ

(t, 0)




=
1

(e−3(t, 0))2




e−3+sin(2πt)(t, 0)
∫ t

0
e−3+sin(2πτ)(t, σ(s))e−3(s, 0)∆s

0 e−3(t, 0)


 ·




e−3⊕◦ıπ(t, 0) −C
∫ t

0
e−3(t, σ(s))e−3(s, 0)∆s

0 e−3⊕◦ıπ(t, 0)


 .

Thus,

L′(t)eR′(t, 0) = L′(t)e
R⊕◦ıπI

(t, 0) = L′(t)e◦
ıπI

(t, 0)eR(t, 0) = L(t)eR(t, 0),

and so we have

L′(t)eR′(t, 0) =
1

(e−3(t, 0))2




e−3+sin(2πt)(t, 0)
∫ t

0
e−3+sin(2πτ)(t, σ(s))e−3(s, 0)∆s

0 e−3(t, 0)


 ·




e−3(t, 0) −C
∫ t

0
e−3(t, σ(s))e−3(s, 0)∆s

0 e−3(t, 0)


 ·




e−3(t, 0) C
∫ t

0
e−3(t, σ(s))e−3(s, 0)∆s

0 e−3(t, 0)



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=
1

(e−3(t, 0))2




e−3+sin(2πt)(t, 0)
∫ t

0
e−3+sin(2πτ)(t, σ(s))e−3(s, 0)∆s

0 e−3(t, 0)


 ·




e−3(t, 0) −C
∫ t

0
e−3(t, σ(s))e−3(s, 0)∆s

0 e−3(t, 0)


 ·




e◦
ıπ

(t, 0) 0

0 e◦
ıπ

(t, 0)







e−3ª◦ıπ(t, 0) C
∫ t

0
e−3(t, σ(s))e−3(s, 0)∆s

0 e−3ª◦ıπ(t, 0)




=
1

(e−3(t, 0))2




e−3+sin(2πt)(t, 0)
∫ t

0
e−3+sin(2πτ)(t, σ(s))e−3(s, 0)∆s

0 e−3(t, 0)


 ·




e−3⊕◦ıπ(t, 0) −C
∫ t

0
e−3(t, σ(s))e−3(s, 0)∆s

0 e−3⊕◦ıπ(t, 0)


 ·




e−3ª◦ıπ(t, 0) C
∫ t

0
e−3(t, σ(s))e−3(s, 0)∆s

0 e−3ª◦ıπ(t, 0)




= L(t)eR(t, 0).

Therefore, ΦA(t, 0) = L(t)eR(t, 0) is another Floquet decomposition of the

transition matrix and γ = −3 ª ◦
ıπ is another Floquet exponent as well as an

eigenvalue of R which corresponds to the Floquet multiplier λ = −2e−3; that is

e−3ª◦ıπ(2, 0) = e−3(2, 0) = −2e−3.



CHAPTER NINE

Conclusions and Future Directions

This dissertation has presented a very general background on the rapidly grow-

ing area of mathematics known as dynamic equations on time scales. In particular,

the focus has been on first order linear dynamic systems and the analysis of the sys-

tem’s stability characteristics via a generalized version of Lyapunov’s direct (second)

method. Stability properties of systems with periodic coefficient matrices on periodic

time scales were also analyzed by a unified Floquet theory.

There are many possibilities for applications of time scales theory. The pa-

pers by Gravagne, Davis, DaCunha, and Marks [20, 21] demonstrate the use of time

scales in high gain adaptive control and bandwidth reduction. The theory offers a

cleaner way to unify the disparate cases of discrete and continuous sampling. The

stability theory introduced in this dissertation has aided in the development of these

applications.

The Floquet theory that has been unified also has many possible avenues for

investigation and analysis. Applying the unified Floquet theory to switched linear

systems as in [18], as well as almost periodic systems on time scales such as [29], are

specific areas of interest.

More investigation and development needs to be done on the time scale expo-

nential function, as well as the time scale matrix exponential function and transition

matrix. The Putzer Algorithm [1, 6] does give a way to calculate the matrix expo-

nential for an individual matrix, however, there does not exist a closed form solution

for eA(t, t0) nor ΦA(t, t0). Perhaps some generalization of the Peano-Baker series [42]

could be of use in finding these closed forms. In addition to the matrix exponential

and transition matrix, to the author’s knowledge, there is virtually nothing in the

literature that gives any insight to a generalized version of a time scales logarithm.
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In the coming fall, the author will investigate applications of time scales to

unmanned autonomous vehicles (UAVs) and unmanned ground vehicles (UGVs) at

the United States Military Academy in West Point, New York and the Army Research

Laboratory on the Aberdeen Proving Grounds in Aberdeen, Maryland.
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[13] C.A. Desoer, Slowly varying ẋ = A(t)x, IEEE Trans. Automat. Control CT-14
(1969), 780–781.

[14] C.A. Desoer, Slowly varying xi+1 = Aixi, Electronics Letters 6 (1970), 339–340.

[15] H.I. Freedman, Almost Floquet systems, J. Differential Equations 10 (1971),
345–354.

[16] T. Gard and J. Hoffacker, Asymptotic behavior of natural growth on time scales,
Dynam. Systems Appl. 12 (2003), 131–147.



100

[17] F. Gesztesy, and R. Weikard, Floquet Theory Revisited, in “Differential Equa-
tions and Mathematical Physics,” Proceedings of the International Confer-
ence, Univ. of Alabama at Birmingham, March 13–17, 1994, International
Press, Boston, MA, 1995.
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