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Abstract—We provide an algorithm for establishing the nonex-
istence of a common quadratic Lyapunov function for switched
LTI systems under arbitrary switching. We show that this nonex-
istence question is equivalent to the emptiness of an associated
semi-algebraic set. The celebrated Positivstellensat; from real
algebraic geometry provides a complete characterization of when
this set is empty. Finally, we obtain the desired certificates of set
emptiness using sum of squares programming.

Index Terms—Positivstellensatz, common Lyapunov functions,
sum of squares, switched systems, real algebraic geometry

I. INTRODUCTION

Stability of switched systems can be determined by the iden-
tification of a single quadratic Lyapunov function applicable
to all component systems. These common quadratic Lyapunov
functions (CQLF) and their nonexistence has been discussed
in several papers [3], [4], [5], [7]. In this paper, we outline an
algorithm for determining nonexistence of a CQLF based on
methods from real algebraic geometry.

We begin by recalling definitions from linear time invari-
ant (LTI) switched system theory and the motivation behind
finding a CQLF for the system. Next, we define the con-
cepts needed from real algebraic geometry, namely Stengle’s
Positivstellensatz, which is an analog of Hilbert’s classical
Nullstellensatz. We then convert the CQLF existence problem
to system of simultaneous polynomial inequalities and use
techniques from real algebraic geometry to determine whether
the polynomial system has a solution. We accomplish this
by relating the Positivstellensatz to a sum of squares (SoS)
program along the lines of Parrilo’s work [8], [9]. When
successful, the SoS program shows that there does not exist a
simultaneous solution to the polynomial system which in turn
implies the nonexistence of a CQLF. Finally, we outline this
entire process for a particular switched system and illustrate
the usefulness of certain MATLAB toolboxes for performing
the SoS programming.

II. STABILITY OF SWITCHED SYSTEMS

A linear N-switched system is comprised of a switching
signal s(t) : R — {1,...,N} and a set of LTI systems
z(t) = A;z(t), where 1 < ¢ < N; which we write as
& = Agy)x. Stability for switched systems under arbitrary
switching requires stronger conditions than just the component
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systems being stable; it has been noted [5] that even if all
subsystems are stable it is possible to switch between the
systems in a manner that would produce unstable solutions.

One method of proving the stability of switched systems is
by finding a CQLF for the system, which has been studied
extensively. We say V : R®™ — R is a common quadratic
Lyapunov function if V(z) = T Pz is positive definite and
V(:z:) = ATP+ PA; <0 forall 1 <i < N. In particular,
Narendra and Balakrishnan [6] showed that a sufficient condi-
tion on the matrices A; to guarantee the existence of a CQLF
under arbitrary switching is that the A; are stable (eigenvalues
in the strict left half complex plane) and pairwise commutative.
Relaxing these types of commutativity assumptions in terms of
the Lie algebra generated by the A; was dealt with extensively
in [1].

Although the Narendra-Balakrishnan result requires pair-
wise commuting A;, we investigate the existence of a CQLF
without the pairwise commuting stipulation. In particular, we
provide a means to generate a proof of the nonexistence of a
CQLF for a given switched system.

Throughout this paper, we appeal to Sylvester’s Criterion
[2, Theorem 7.5.2] of positive definiteness: a real symmetric
matrix is positive definite if and only if all of its leading
principal minors have positive determinant. For an n x n real
symmetric matrix, this results in n polynomial inequalities as
shown in the example.

Example I1.1. Consider the LTI system & = Az where

From standard Lyapunov theory, V = 27 Pz is a Lyapunov
function for this system provided P = PT > 0 and AT P +

PA < 0 Letting
|:x :| ,
Yy z

and employing Sylvester’s Criterion to the symmetric matrix
—(ATP + PA), these two conditions are equivalent to the



following system of polynomial inequalities:

x>0,
2z —y? >0,
—2(a1x + azy) > 0,
—4(a1z + azy)(a2y + ag2)
+[(a1 + as)y + asz + azz]* > 0.

(IL1)

To extend this example to a switched system involving A;, i =
1,..., N, note that the corresponding system of polynomial
inequalities will have the same basic structure as (II.1). When
A; € R?*2 this introduces 2N new inequalites each of the
form of the last two above. In general, when P is symmetric
and A, € R"*", the polynomial system will consist of 1 +
2+ -+-+n=1in(n+1) unknowns.

III. REAL ALGEBRAIC GEOMETRY

Real algebraic geometry is concerned with the interplay
of sets defined by polynomials with real-valued coefficients
and the underlying geometry of said sets; oftentimes algebraic
problems can be easily solved when cast in a geometric
light and vice versa. In particular, we focus on the aspects
of real algebraic geometry which relate the solvability of
a simultaneous system of polynomial inequalities with the
emptiness of the associated semi-algebraic set (defined below).

We will denote by Rlzy,...,z,] = R[X] the ring of
polynomials in n unknowns with real valued coefficients.

Definition IIL1. Given {f;}ic; C R[X], a (real) semi-
algebraic set is a set of the form

{z eR": fi(z)*0Viel}
where * represents any of the following: >, #, or =.

Example IIL1. Let {fi(z,y) := 22, fo(z,y) = xy?} C
Rz, y]. Then

{(z,y) €R?: fi(z,y) 20, fo(z,y) # 0}
is a semi-algebraic set, whereas
{(z,y) € R?: fi(x,y) = e ®siny > 0}
is not a semi-algebraic set.

Many types of problems can be formulated through semi-
algebraic sets. Primarily in this paper, we will be concerned
with when a given semi-algebraic set is empty, and the
Positivstellensatz is a tool that can assist us in this goal. Before
we state the theorem in our formulation, we must define three
more concepts.

Definition IIL.2. Given a set G C R[X] of polynomials, we

define the monoid generated by G to be the set
monoid{G} := {g7"" ... gn'" : 9; € G, m; € No}.

with the usual commutative multiplication on R[X].
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Example IIL2. Let G = {¢1(z,y) = z + vy, g2(x,y) :=
y} C R[z,y]. Then

monoid{G} = {(z + y)"y™ : n,m € No}.

Notice that this contains f(x,y) = (z+y)" and h(z,y) = y™
for all natural numbers n and m.

Definition II1.3. The cone of sum of squares polynomials,
denoted X2, is given by

¥% o= {f €RIX]: f(X) = 3 62(X), g:(X) € RIX]}.
Given F' C R[X], we define the cone generated by F as

cone{F'} := {so +s1f1+ -+ snfu:
fi € monoid{F},s; € ¥?}.

It is important to note that a general member of the set
cone{F'} can be considered as a sum of square polynomial
so plus all possible multiples (without repetition) of elements
in F' times SoS polynomials. While the definition allows
for terms such as s;f?f3fifs to be in cone{F} (where
f1, f2, fa, fs € F, and the superscript refers to exponentia-
tion), notice that sy f2f35 fafs = s1f2 f2fofafs, and s1f2f3 €
%2, Therefore we could represent this term by using the sum
of square sy = s1f2f2, as in safofufs.

Example IIL3. Let F' = {fi, fo} C R[X]. Then any element
in cone{F'} can be represented in the form

50 + s51f1 + s2fo + s3f1f2,
where s; € ¥2.

We can now state a formulation of the Positivstellensatz!
suitable for our purposes.

Theorem IIL1 (Positivstellensatz, [10]). Let F,G C R[X].
Then the semi-algebraic set

{r eR": f(x) >0VfEeF, glx) £0Vg € G}

is empty iff there exists f € cone{F} and g € monoid{G}
such that f + g?> = 0.

The goal now is to use the Positivstellensatz to determine
whether the semi-algebraic set generated by the polynomial
inequalities resulting from the conditions on the CQLF is
empty. A key component of the argument is that the search
for f € cone{F} and g € monoid{G} such that f+g? = 0 is
equivalent to searching for certain types of SoS polynomials.

To illustrate this, suppose we want to determine if the set

{X eR": fi(X) >0, fo(X) >0, g1(X) # 0}

is empty or not. By Example III.3, a general element in
cone{ f1, fo} is of the form so + s1f1 + safe + s3f1f2, so
we need to determine if there exist SoS polynomials s; such
that

2
sotsifi +safe+s3fifat+ g™ =0,
IThe name of this theorem comes from the German for “positive places

theorem” since it determines the subset of R™ on which a system of
polynomials is positive.



for some m € N.

To recapitulate, we took the problem of determining the ex-
istence of a CQLF and translated it to a problem involving the
simultaneous solution to a system of polynomial inequalities.
We then recast that as a problem of determining whether the
associated semi-algebraic set was empty. We will resolve this
“set emptiness question” via the Positivstellensatz and do so
by looking for f and g with the SoS representations described
above.

IV. SOS PROGRAMMING AND SOSTOOLS

An SoS program is a special case of a semi-definite program
(SDP), which is a generalization of linear programming. In
an SDP, one searches over the cone of positive semi-definite
matrices as opposed to the set of coordinate-wise non-negative
numbers. We only offer a brief overview of the relationship
between real algebraic geometry and SDP here, but the inter-
ested reader should consult [8].

An SoS program has the following form:

Given a; ; € R[X], find SoS polynomials s;(X) such that

n
ao,j + Z ag,iSi = O, j = 1, e, .

i=1
This is useful since in order to obtain an answer from the
Positivstellensatz, we must find SoS polynomials such that f+
g? = 0. If the constraint equality in the SoS program is given
by f + g% = 0, then solving the SoS program is equivalent to
proving that no CQLF exists for the switched system. Since
the Positivstellensatz is both necessary and sufficient, if the
semi-algebraic set is indeed empty, then the SoS program will
eventually find certificates of emptiness (the certificates being
the s;(X) € ¥2).

Since the set of CQLFs for a given switched system can be

thought of as a semi-algebraic set, we interpret Parrilo’s result
in this light.

Theorem IV.1 ([8]). Consider a system of polynomial equal-
ities and inequalities. Then, the search for bounded degree
Positivstellensatz refutations can be done using semi-definite
programming. If the degree bound is chosen to be large
enough, then the SDP will be feasible, and the certificates
obtained from its solution.

Parrilo’s proof outlines an algorithm that can answer the
emptiness question using SOSTOOLS, a MATLAB package
which converts an SoS program to an SDP and solves it. The
algorithm in his proof will be demonstrated with the following
example.

V. AN EXAMPLE
Let
—0.2

0.3 —0.9 04
A= [ 0 —0.1] and Az = [ 1.7 —0.9]’

which are stable matrices, and consider the arbitrarily switched
system & = A;z, i € {1,2}. We will use the methods outlined
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in this paper to show the nonexsistence of a CQLF for the
switched system.

Analogous to Example II.1, for V' = 2T Pz to be a CQLF,
we need P = PT > 0 and AP + PA; <0 fori = 1,2.
Hence, the associated system of polynomial inequalities (in
the form required for the Positivstellensatz) is

filz,y,2) =2 >0,
fQ(x,y,Z) = T2 y2 >0,
i (z,y, 2) =042 >0,
Mz, y, 2) = 0.092% + 0.06zy
—0.08zz + 0.09y% > 0,
[ (x,y, 2) == 1.8¢ — 3.4y > 0,
22 (x,y, 2) = 0.162% — 1.44zy — 1.88z2
+1.442 + 3.24y* — 2.72y + 2.892% > 0.

(V.1)

The non-equalities needed to obtain strict inequalities above
are

V.2
92($7y,z) = -/L’Z_yQ#O. (V-2)

By the Positivstellensatz, we seek a g € monoid{g1, g2} and
f € cone{fi, fo, fi', 2A1, A2 QAQ} such that f + g2 = 0.
Set g := ¢7"g5", where the parameter m is chosen to be 1 in
this example. If the semi-algebraic set defined by (V.1), (V.2)
is indeed empty, Theorem IV.1 ensures that we will find a
“certificate of emptiness” provided we search through enough
of the cone of SoS polynomials; increasing the parameter m
accomplishes this.

Next, we write the general form for an element in
cone{ f1, fa, f, 541, fz,fQAQ} and set it equal to f. Recall
from earlier that this can be thought of as a linear com-
bination whose coefficients are SoS polynomials s;(x,y, z)
and whose ’unknowns’ are all possible multiples of the set
{f1, fo, £, £, £%2, £2%2 )} without repetition. If the set has
n elements, then the number of terms in this f polynomial
will be () + (5) +---+ () + 1. For brevity, we refrain from
writing out the expansion of f, but keep in mind that every
summand of the polynomial is multiplied by a s;(z, vy, 2).

Using SOSTOOLS, we implement the following SoS pro-
gram:

Find SoS polynomials s;(x,y, z) such that
f+(9192)* = 0.

In doing so, SoS-variables are called, which are polynomials
written in a general basis representation up to a certain degree,
with unknown coefficients. This degree must be larger than
or equal to the degree of g, which is 3m; for this example
d = 4. soSTOOLS will then search through the cone of SoS
polynomials for s;(z,y, z) satisfying the equality constraint.
By the Positivstellensatz, if the degree bound d is sufficiently
large, the program will return SoS polynomials certifying the
emptiness of the semi-algebraic set defined by (V.1), (V.2).
This in turn establishes the nonexistence of a CQLF for this
switched system.



Running SOSTOOLS, we find s;(z,y,2) € £2 such that

= —4.4634 x 107 192% — 3.2535 x 10~ 25y
+2.9421 x 107252 — 7.1419 x 10~ Pzty?
—1.4048 x 10~ 2z @z+50ﬁ5x10*342
—4.215 x 10723y 4 7.5615 x 10~ 132322
—8.9199 x 10~ Ma3y22 — 3.7967 x 10~ Hz323
+4.035 x 1071322y — 1.0967 x 10~ 132%y32
—4.817 x 10*14x2y222 3.1445 x 10~ Mz%y2?
—8.9278 x 107152224 — 6.9118 x 10~ Pxy®
—2.2009 x 10~ Mzytz — 2.9263 x 10~ Hzy322
+2.0733 x 10" M zy?2® — 4.4062 x 10~ Pryz?
— 4.8008 x 1076225 4 3.4868 x 10715y

— 1.8436 x 10715952 — 1.224 x 107149122
—1.2395 x 107 My323 + 1.5697 x 107 15¢22*
+4.2143 x 1070425 42,4135 x 107166

=~ 0.

f+9°

Given the relatively simple structure of the program, we could
scale this type of SoS program to include as many switches
(and therefore, matrices) as we like.

VI. SUMMARY AND CONCLUSIONS

To recapitulate, the idea of this paper was establish the
nonexistence of a CQLF for a switched system with the plan
shown in Figure 1 below.

# a simultaneous

Lyapunov constraints solution to

# CQLF system of
polynomial
inequalities

semi-algebraic
set =
Positivstellensatz J{
3 SOS. SoS program 3 f, g SllCh that
representations f+¢>=0
for f, g
Figure 1. The algorithm presented here.

We translated the problem of determining the existence of
a CQLF into a problem involving the simultaneous solution to
a system of polynomial inequalities. We then recast that as a
problem of determining whether the associated semi-algebraic
set was empty. We resolved this “set emptiness question” via
the Positivstellensatz and did so by looking for f and g with
the desired SoS representations.
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We have shown that if there does not exist a CQLF for
a given a switched system @ = A;x, we can use SoS pro-
gramming to provide a certificate of nonexistence. Although
the nonexistence of a quadratic Lyapunov function does not
necessarily imply that the system is unstable, our result does
allow us to definitively rule out the existence of a quadratic
Lyapunov function when we suspect one does not exist.
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