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Abstract—A fundamental stability result for arbitrarily
switched linear systems in continuous time assumes that the
set of system coefficient matrices are commutative with one an­
other. This result was recently generalized to include arbitrarily
switched linear system on arbitrary time scales T, with additional
constraints imposed upon the graininess of the time scales. In
the following analysis we explore the case when pairs of switched
systems are non­commutative by visualizing the space of common
Lyapunov solutions graphically. We deduce that there are cases in
which a common Lyapunov solution exists for a non­commutative
switched system if the time scale graininess is limited to some
upper bound1.

I. INTRODUCTION

Dynamical systems modeled as mixtures of discrete­event
switching logic and standard difference or differential equa­
tions often belong to a class termed "switched systems." Typ­
ical examples of switched systems are vehicle transmissions,
in which the vehicle dynamics change essentially instanta­
neously through gear shifts, or biological systems in which cell
regulatory dynamics change suddenly depending on protein
concentration levels. Two excellent overviews are given in the
references [15],[17].
Another relevant example is the distributed control network,

in which closed­loop controllers share congested communica­
tion networks that connect sensors nodes, actuators and other
controllers. This example is particularly interesting, because
the nature of the communication channel (the "network") may
determine not only the characteristic switching modes but
also the timing of the system. In other words, the underlying
time domain – the times at which communication packets are
transmitted or received – is neither continuous nor uniformly
discrete as is usually expected or assumed; neither the contin­
uous real line R nor the integers Z appropriately capture the
temporal nature of the system [7],[8],[12].
To meet the challenge of switched systems with variable

time domains, we employ the field of dynamic equations on
time scales (DETS). An introduction is given in the appendix,
but briey a time scale T is any closed subset of R, and
the time scale graininess () refers to the distance from one
point  in T to the next. Tools and results from the field of
DETS allow dynamical systems to be modeled and analyzed

1This work was supported by NSF award CMMI­726996.

on virtually any time scale through the use of generalized dif­
ferential equations [2]. Not surprisingly, as ! 0, time scale
dynamic equations reduce to standard differential equations;
as  ! 1 they reduce to standard difference equations. Time
scales that are discrete (no continuous subintervals) with non­
uniform step sizes naturally fit the problems of networked,
distributed systems.
In the next section, we set up the time scale switched system

stability problem, and briey highlight some results that give
sufficient conditions for stability. The main contribution of
the paper then follows, a discussion of the geometry of the
switched system stability problem when system commutativity
constraints are relaxed.

II. SWITCHED SYSTEMS ON TIME SCALES
Let A := f1 2  g be a set of  matrices in R£

with non­repeated eigenvalues, and  : T! f1 2 g be a
switching signal, where T is a time scale. The switched linear
system

¢() = ()()  ¸ 0 (0) = 0  2 T (1)

has unique solution  : T! R. Throughout the ensuing dis­
cussion, we make the following assumptions unless otherwise
noted:
A1 Switching signal  is arbitrary over T. (This gives

rise to the "arbitrary" switched system problem.)
A2 For each  2 TAll eigenvalues of  2 A lie

strictly within the Hilger circle. (In other words, each
individual system is asymptotically stable, meaning
that ¢() = () has k()k ! 0 for as !1.)

A3 Each  is regressive for all  2 T.
A4 All elements of A commute pair­wise, i.e.  ¡

 = 0 for all   2 A.
A5 T has the following properties: (i) 0 2 T, (ii) T

is unbounded above, and (iii) T has graininess 0 ·
() · max for all  2 T. (At most, max must be
selected so that A2 remains valid.)

Without loss of generality, some of the discussion that
follows is restricted to the case with two switched systems
to preserve clarity. Also, we assume that all quantities except
 are time­varying unless otherwise noted. To examine the
stability of (1), we propose the Lyapunov candidate

 =   0 (2)
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and examine the sufficient condition for stability (in the sense
of Lyapunov) imposed by Lyapunov’s second method:


  ++

 +(+
 )

¢(+)  0 (3)

The equation above, known as the Time Scale Dynamic Lya­
punov Equation [4], illustrates one of the essential problems
of switched system stability analysis: finding a "common"
function (or, equivalently in this case, a common Lyapunov
solution  ) that applies for all . There is no a priori guarantee
that a common solution exists for any two systems  – even
when each individual system is stable over the entire time
scale! However, on T = R it is known that assumption A4
gives a sufficient condition for the existence of a common
quadratic Lyapunov function [15]; the same result was later
extended to include switched systems on any T that meets the
conditions of A5 [16] and an additional constraint imposed
upon the graininess ().
The matter of the additional constraint is discussed else­

where at length [14],[16]. In short, there exists a region < ½
R2 such that common solutions to (3) exist when f g 2 <.
Imposing f g 2 < for the entire time scale guarantees that

( + )
¢( + )¡  0 (4)

for some  = 
  0, and hence, solving


  +  + 

  = ¡ (5)

for all  is equivalent to solving (3). Note that (5) is termed
the Time Scale Algebraic Lyapunov Equation (TSALE). The
two­dimensional region < is defined as the area under 2
constraint curves, whose closed form is known and derived in
the cited works. An example, for two systems of  = 2, is
given in Figure 1. The upshot of the graininess constraint is
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Fig. 1. Region < is shaded above for two systems with eigenvalues
f¡12¡08g and f¡1§02g. Note that 4 of the 8 constraint curves appear
in the plot; the other 4 are outside of the plot boundary.

that, while it is always possible to preserve stability while
"downshifting" the graininess (letting   ), arbitrary
"upshifting" is not permitted. However, we stress that the
graininess upshifting constraint is one of several sufficient

conditions for the stability of an arbitrarily switched linear
system.

III. THE COMMUTATIVITY CONSTRAINT

Another sufficient condition, the real "elephant in the room,"
is the system coefficient commutativity constraint imposed
by A4, which is arguably a far more restrictive condition
than the graininess upshift constraint. In point of fact, more
general results do exist that can replace A4 (for T = R). One
noteworthy result [15] guarantees the existence of a common
Lyapunov function if any convex combination of  and 

is itself a stable system; however the result only applies to
families of systems with  = 2. Another, stronger, result gives
the existence of a common Lyapunov function if and only
if the Lie algebra generated by the set A is solvable, with
the standard Lie bracket commutator. The drawback to this
seemingly strongest of guarantees is that it is very difficult or
impossible to test, practically speaking.
To attempt to understand what the commutativity condition

really means, it is useful to visualize the problem. This is more
easily done for  = 2 switched systems of dimension  = 2.
In this case we have two simultaneous TSDLEs, written as


1  + 1 + 

1 1  0 (6)

2  + 2 + 

2 2  0 (7)

Since it is required by definition that  =   0, the
solution matrix  is isomorphic to R3 and it can be viewed as
a "point" in 3­space. Let P1 ½ R3 be the set of all solutions
to (6), and P2 ½ R3 be the set of all solutions to (7). It
is straightforward to show that P1 and P2 are convex sets;
plotted in 3­space, they assume the shape of conic sections
whose "tips" touch (but exclude) the origin.
Thus, the essential problem of simply knowing whether a

common quadratic Lyapunov function exists boils down to
knowing whether P1 \ P2 6= ?. This paper does not address
that question directly (readers are referred to a parallel SSST
2011 paper [6] for a discussion about knowing whether a
common Lyapunov function does not exist). However, the
geometry is revealing and suggests some interesting possible
avenues of exploration.
To begin, consider the case when condition A4 is in force.

An iterative method for finding  , seen in [15] and recently
adapted for time scales by Miller, Ramos, et. al., can be
geometrically interpreted as: (A) Find, iteratively, solution 
within the smallest P (i.e. the cone with the smallest cross­
sectional area, we’ll call this P); (B) use A4 to show that
P µ P for all    and therefore  2 P. This is
nicely illustrated in Figure 5. Equally interesting, though,
are cases where 1 and 2 become progressively "less"
commutative. Although commutativity is a yes/no property
(numerics notwithstanding), there is a continuum of "close­
ness" to commutativity that appears to correlate with the
relative size of the intersection P1 \P2. This is illustrated in
the sequence of Figures 2 through 5; the first figure showing
a case where no common solution exists.
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Fig. 2. The P1 and P2 cones, for two matrices 1 and 2 that do not
commute and do not admit a common quadratic L yapunov solution.
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Fig. 3. Compared to the previous figure, 2 modified so that it does not
commute with 1 but admits a commom solution, i.e. P1\P2 is non­empty.
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Fig. 4. P1 \ P2 is growing as the coefficient matrices move "nearer" to
commutativity.
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Fig. 5. 1 and 2 are commutative, and P1 \ P2 = P1.

The preceding figures and discussion assumed, without loss
of generality, that  = 0 in (6) and (7), thus reverting to the
case of the standard algebraic Lyapunov equation. However,
on a general time scale T the variable graininess requires
a new solution to (6) and (7) at every point in time. This
gives rise to the question, how does the graininess impact
the existence and size of P1 \ P2? Intuitively, the negative­
definiteness of a TSALE comes from the first two terms. The
positivity and symmetry of the third term, 

 , suggests
that, as  increases, the space P must shrink (i.e. the cone
will get narrower but its central axis will not change direction).
Therefore, if P1 \ P2 was non­empty for small graininess, it
may very well become empty above some critical graininess
we term . Figures 6 ­ 9 illustrate this idea.

IV. CONCLUSION
This paper is focused on the challenge of proving the

stability of two or more arbitrarily switched linear systems on
time scales using common quadratic Lyapunov functions, even
when the system matrices are non­commutative. A problem
statement was given, followed by a brief summary of the
nature of, and constraints upon, common solutions in the case
of commutative system matrices. Then a geometric view of
the problem was presented.
We are left with two intriguing questions:
1) Is there a metric that can be applied to the matrix
commutator that will indicate when P \ P = ? for
 = 0? Even if such a metric were conservative (i.e. it
provided a testable sufficient condition) it would still be
quite useful.

2) As evidenced by the last example, if a common solution
exists for  = 0, there is a hard upper bound 
on the graininess such that no common solutions exists
when  ¸ . Can  be predicted given the 

matrices, and when is  · max? (It may be that the
critical graininess is sometimes larger than the maximum
graininess that will keep A5 in force.)

While the preceding discussion involves switched systems
with arbitrary switching on an arbitrary (upper bounded) time
scale, there is also the open question of constrained switching
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Fig. 6. A TSALE with  = 0 is equavalent to a standard Lyapunov equation.
Here,1 and2 do not commute but do admit a common quadratic Lyapunov
solution.
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Fig. 7. The same  matrices, but increaseing the graininess to  = 05.
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Fig. 8. The critical graininess is  = 09.
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Fig. 9. For graininess   , no common solutions are admitted.

stability on time scales, in which the choice of each successive
system matrix  is not arbitrary but based upon knowledge of
the state or some other information. On T = R, it is known that
constrained switching can results in a stable switched system
whose "ingredient" systems are themselves unstable.

V. APPENDIX: DYNAMIC EQUATIONS ON TIME SCALES
A. What Are Time Scales?
This appendix is reproduced from the authors’ previous

works as convenience to readers not yet familiar with the
theory of time scales [5]. The theory of time scales springs
from the 1988 doctoral dissertation of Stefan Hilger [11] that
resulted in his seminal paper [10]. These works aimed to unify
various overarching concepts from the (sometimes disparate)
theories of discrete and continuous dynamical systems [13],
but also to extend these theories to more general classes of
dynamical systems. From there, time scales theory advanced
fairly quickly, culminating in the excellent introductory text by
Bohner and Peterson [3] and the more advanced monograph
[2]. A succinct survey on time scales can be found in [1].
A time scale T is any non­empty, (topologically) closed

subset of the real numbers R. Thus time scales can be (but
are not limited to) any of the usual integer subsets (e.g. Z
or N), the entire real line R, or any combination of discrete
points unioned with closed intervals. For example, if   1 is
fixed, the quantum time scale Z is defined as

Z := f :  2 Zg [ f0g

The quantum time scale appears throughout the mathematical
physics literature, where the dynamical systems of interest are
the ­difference equations. Another interesting example is the
pulse time scale P formed by a union of closed intervals
each of length  and gap :

P :=
[



[(+ ) (+ ) + ] 

Other examples of interesting time scales include any collec­
tion of discrete points sampled from a probability distribution,
any sequence of partial sums from a series with positive terms,
or even the famous Cantor set.
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TABLE I
DIFFERENTIAL OPERATORS ON TIME SCALES.

time scale differential operator notes integral operator notes

T ¢() =
(())¡()

()
generalized derivative

 
 ()¢ generalized integral

R ¢() = lim!0
(+)¡()


standard derivative

 

()¢ =

 

()  standard Lebesgue integral

Z ¢() = ¢() := (+ 1)¡ () forward difference
 

()¢ =

¡1
= () summation operator

Z ¢() = ¢() :=
(+)¡()


­forward difference

 
 ()¢ =

¡
= () ­summation

Z ¢() = ¢() :=
()¡()
(¡1) ­difference

 
 ()¢ =


=

()
(¡1) ­summation

P ¢() =




 () = 

(+)¡()


 ()  
pulse derivative


 ()¢ =








() () = 

()() ()  

pulse integral

The bulk of engineering systems theory to date rests on
two time scales, R and Z (or more generally Z, meaning
discrete points separated by distance ). However, there are
occasions when necessity or convenience dictates the use of an
alternate time scale. The question of how to approach the study
of dynamical systems on time scales then becomes relevant,
and in fact the majority of research on time scales so far has
focused on expanding and generalizing the vast suite of tools
available to the differential and difference equation theorist.
We now briey outline the portions of the time scales theory
that are needed for this paper to be as self­contained as is
practically possible.

B. The Time Scales Calculus
The forward jump operator is given by () := inf2Tf 

g, while the backward jump operator is () := sup2Tf 
g. The graininess function () is given by () := ()¡ .
A point  2 T is right­scattered if ()   and right dense

if () = . A point  2 T is left­scattered if ()   and left
dense if () = . If  is both left­scattered and right­scattered,
we say  is isolated or discrete. If  is both left­dense and right­
dense, we say  is dense. The set T is defined as follows:
if T has a left­scattered maximum , then T = T ¡ fg;
otherwise, T = T.
For  : T ! R and  2 T, define ¢() as the number

(when it exists), with the property that, for any   0, there
exists a neighborhood  of  such that
¯̄
[(())¡ ()]¡ ¢()[()¡ ]

¯̄
· j()¡j 8 2 

(8)
The function ¢ : T ! R is called the delta derivative or the
Hilger derivative of  on T. Equivalently, (8) can be restated
to define the ¢­differential operator as

¢() :=
(())¡ ()

()


where the quotient is taken in the sense that ()! 0+ when
() = 0.
A benefit of this general approach is that the realms of

differential equations and difference equations can now be

viewed as but special, particular cases of more general dy­
namic equations on time scales, i.e. equations involving the
delta derivative(s) of some unknown function. See Table ??.
Naturally, with any discussion of derivatives a notion of

"continuity" is required. For  : T ! X, the function  is
said to be right­dense continuous, or rd­continuous, if it is
continuous (in the usual sense) over any right­dense interval
within T. The set of all rd­continuous functions that are n­
times differentiable is denoted 

(TX).
Since the graininess function induces a measure on T, if

we consider the Lebesgue integral over T with respect to the
­induced measure,

Z

T
() ()

then all of the standard results from measure theory are
available [9]. The upshot is that the derivative and integral
concepts apply just as readily to any closed subset of the real
line as they do on R or Z; see Table 1. Our goal is to leverage
this general framework against wide classes of dynamical and
control systems.
The function  : T ! R is regressive if 1 + ()() 6= 0

for all  2 T. We define the related sets

R := f : T! R :  2 (T) and 1 + ()() 6= 0

for all  2 Tg
R+ := f 2 R : 1 + ()()  0 for all  2 Tg

For () 2 R, we define the generalized time scale expo­
nential function ( 0) as the unique solution to the initial
value problem ¢() = ()(), (0) = 1, which exists
when  2 R. See [2]. The system eigenvalue, (), is said to
belong to the Hilger Circle when j1 + ()()j  1.
Similarly, the unique solution to the matrix initial value

problem ¢() = ()(), (0) =  is called the
transition matrix associated with this system. This solution
is denoted by ©( 0) and exists when  2 R. A matrix
is regressive if and only if all of its eigenvalues are in R.
Equivalently, the matrix () is regressive if and only if
 + ()() is invertible for all  2 T.
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