
Manual of Time Scales Toolbox for MATLAB

BAYLOR UNIVERSITY

WACO, TX 76798

©2005 Baylor University

2

User’s Manual:

Time Scales Toolbox

for MatLab

Written By:
Brian Ballard

Bumni Otegbade

This project funded in part by NSF Grant CNS-0410685

3

Table of Contents

1. Installing the Time Scale Toolbox.. 4

2. Time Scale Constructor.. 5

3. Overloaded Function Operations .. 9
• abs, and, angle, display, find, iscompatible, isdiscrete,

mtimes, size, subsasgn, subsref
Other Overloaded Operations .. 16
• conj, cos, eq, exp, ge, gt, horzcat, imag, le, lenth, log, lt, min,

minus, mpower, mrdivide, ne, not, or, plus, power, real, sin,
sqrt, tan, times, uminus, vertcat

4. Utility Functions.. 20
Basic Time Scale Operations ... 20
• tsbackward, tsforward, tsmu, tsnu, tsplot
Time Scale Calculus Operations.. 24
• tsexp, tsode
Trigonometric & Hyperbolic Functions 28
• tscos, tscosh, tssin, tssinh
Miscellaneous Time Scale Functions .. 35
• tsfind, tszeros

Index...357

4

Installing the Time Scale Toolbox
This chapter is an introduction to the Time Scale Toolbox explaining how to
download the MatLab toolbox from the internet and implement the software on
your computer.

The Time Scale Toolbox for MatLab is downloaded into a
zip folder. Inside this folder contains all of the functions and
overloads necessary to successfully use time scales with the
MatLab software. It is important to understand the structure
of the tstoolbox.zip folder to be sure that the functions are
properly used.
The tstoolbox.zip folder contains utility functions that are
typed or called by the user, as well as overloaded functions
that are regular MatLab operators but modified to perform
on time scales. The overloaded functions are all located in
the @timescale folder and are not designed to be called by
their function names, but to simply be used as operators.

Once MatLab is opened, open the tstoolbox
folder to access the time scale functions and
operators.

It is important that the tstoolbox directory is
the space in which you are working. If the
user is working inside the @timescale
directory most of the functions will not work.

The correct implementation is displayed to the
right.

Chapter

1

5

Time Scale Constructor
This chapter examines how the time scale constructor is set up, possible ways to
define a time scale object, assignment of time scale objects and operations on
these time scale objects. This time scale toolbox makes it easy to call the time
scale constructor and offers a substantial amount of flexibility.

The time scale constructor is located in the file timescale.m in the class methods folder. The time scale
object accepts zero, one or an even number of inputs, as is obvious from its calling syntax below.
The constructor is made such that when there are no inputs, an empty time scale object is created.
When there is only one input, it must be another time scale. In that case, the input time scale is
simply copied into the resulting time scale, or an operation performed on the input is reported to the
result. Time scale objects will accept other time scale objects.

Chapter

2

6

FORMAT OF A TIME SCALE OBJECT

T = TIMESCALE(DATA1,FLAG1,DATA2,FLAG2,...)

Inputs to the Time Scale Object:
DATAn: An array of numbers that represents a time scale interval. The DATA arrays must be

1 x n “row vectors.”
FLAGn: A flag, ‘c’ or ‘d’ must be appended to each interval of the time scale to represent

whether the associated interval is continuous or discrete. If flag = ‘c’, then the
numbers in DATA are a discretization of a continuous interval. If something other
than ‘c’ or ‘d’ is input, the default is ‘c’ (continuous).

Outputs of the Time Scale Object:
T: A time scale object containing a concentration of the DATA intervals along with the

type (continuous or discrete) of the intervals.

An alternative calling syntax is

T = TIMESCALE(DATA, S)

where DATA is a vector of data points and S is a time scale size matrix (cf. Size in Chapter 2)

Ways to Enter a Time Scale Object

The time scale constructor can be called in various ways. Examples are given below. All of the
definitions below yield the same time scale object.

1. Enter each number individually inside a set of

brackets with a space in between each object.

T = timescale ([1 2 3] , ‘d’ , [4.1 4.2 4.3] , ‘c’)

2. Enter a range of numbers inside brackets using

the colon operator:

T = timescale ([1:3], ‘d’, [4.1:0.1:4.3], ‘c’)

7

3. Create a data vector and a type matrix:

T = timescale (data, type)

 where data = [1 2 3 4.1 4.2 4.3]
and type = [3 6;1 0]

Notice that each different syntax produces the same result. There are multiple ways to enter time
scale objects.

Empty Time Scales

Empty sets or empty interval time scales can also be created.

Here is an example of an empty set time scale.

Here is an example of an empty interval time
scale.

How Time Scale Objects Are Stored and Handled

When created, a time scale object T is a class object of type ‘timescale’ which has two class fields.

DATA Field
The DATA field is several arrays of the numbers that make up each interval of the object. These N
DATA arrays must be 1 x n or row vectors, where n is the length (number of data points) of each
interval and N is the number of intervals in the object.

8

TYPE Field
The second piece of the time scale object is the TYPE field which is a 2 x N matrix where N is the
number of intervals. It contains very vital and useful information about the time scale object that has
been created.
First Row: indices of the points in the DATA array. Each index in the TYPE matrix is the index

of the last number in each interval. If an interval is EMPTY, its index is the same as
the index of the previous interval.

Second Row: a binary representation of the flags ‘c’ (represented as 0) and ‘d’ (represented as 1).

Again, there are N columns of these flags.

Example
Consider the time scale

 T = timescale ([1 2 3], ‘d’ , [4.1 4.2 4.3] , ‘c’).

As shown in the figure below, the type matrix is

⎥
⎦

⎤
⎢
⎣

⎡
=

01
63

TYPE .

From this matrix, we can reach several conclusions about the time scale object:

i) there are only two intervals in the time scale object.
ii) the last piece of data in the first interval is the third in the time scale and the last number

in the second interval is the sixth in the time scale.
iii) there are three data points in both intervals.
iv) the first interval is discrete and the second is continuous

9

Overloaded Function Operations
In creating the Time Scales toolbox many of the usual operations must be
overloaded to be defined for the time scale class. Some new operations have been
added.

Many mathematical functions which can be performed on real numbers cannot be performed the same
way on time scales. MATLAB already provides these functions for real numbers, but this toolbox allows
users to perform these operations on time scales, using time scale calculus. These functions are contained
inside a folder called “@timescale” and do not always require a call of their function name to operate.

abs Calling Syntax: A = abs (B)

 Inputs:

 A: time scale object

 Output:

 B: time scale object containing the absolute
value of the data entered

This is the absolute value of the elements of the time scale object. When any of the data in the time
scale is complex, this function yields the complex modulus (magnitude) of those elements of the time
scale.

Chapter

3

 10

and Calling Syntax: C = and (A, B)

 Inputs:

 A, B: time scale objects

 Output:

 C: time scale object containing the usual
logical AND of the data in time scales A
and B

The AND function implements the time
scale equivalent of MATLAB’s usual AND
logical operator, C = A & B. The output
holds a time scale object of 1’s and 0’s.

angle Calling Syntax: A = angle (B)

Inputs:

 B: time scale object

Output:

 A: time scale object containing the complex
plane angles of the complex numbers in
input B

ANGLE is a time scale overload of the regular MATLAB angle function. A time scale containing the
complex plane angles of the complex numbers in the input is returned. The solotion is given in
radians.

 11

display Calling Syntax: display (A)

Inputs:

 A: time scale object

Output:

 None. Operation is performed.

The DISPLAY function is implicitly called
when a MATLAB command is issued and not
terminated with a semi-colon (see image on the
right). For time scale objects, it is called by
simply evaluating a time scale object without a
semi-colon so that the user can see the contents
of the time scale. It specifies whether the
interval is discrete, continuous or empty. Unlike
the regular MATLAB display function, this
function displays “empty” when there is an
empty interval.

find Calling Syntax: [I, (flag)] = find (T)

 Inputs:

 T: time scale object

 Outputs:

 I: vector
 flag: Optional vector

The FIND function works similarly
to the standard MATLAB FIND
function. It returns the instances of
nonzero entries in the time scale
object T, such that T(I) returns the
nonzero values. The optional FLAG
output indicates whether the
corresponding indices point to a
continuous (FLAG = 0) or discrete
(FLAG = 1) interval. FIND returns
empty if there are no nonzero entries
in T.

 12

incompatible Calling Syntax: Bool = incompatible (A, B)

 Inputs:

 A, B: time scale objects

 Output:

 Bool: scalar

This function determines whether time scale objects A and B are compatible. “Compatible” is
defined as both time scales having:

(i) the same number of intervals
(ii) the same interval type (continuous or discrete) with each interval
(iii) the same number of data points.

The value of BOOL is determined based on the following:

• 0 The time scales are compatible

• 1 The time scales have a differing number of intervals

• 2 The time scales have differing interval types

• 3 At least one interval in A has a different number of data points
 than its companion in B.

• 4 A or B is not a time scale.
As seen in the example below, when given two time scales, one with a discrete and continuous
interval, the other with identical intervals differing in type, the function returns a 2.
In the second example below, one time scale contains 2 intervals while another time scale contains
1 interval, causing the function to return a 1.

 13

isdiscrete Calling Syntax: D = isdiscrete (T)

 Inputs:

 T: time scale object

Output:

 D: time scale object containing 1’s for
discrete intervals

ISDISCRETE returns a time scale object D of the same size and type as input T, with 1’s in the
discrete intervals and zeros in the continuous intervals.

An example using isdiscrete is given:

 14

mtimes Calling Syntax: S = mtimes (A, B)

 Inputs:

 A, B: one time scale object, one
scalar

 Output:

 S: time scale object holding the product

MTIMES multiplies
data in a time scale
object with a scalar
and S is a time scale
object containing
the product. This
can be performed by
using either of the
two examples to the
right.

size Calling Syntax: S = size (A)

 Inputs:

 A, B: time scale object

 Output:

 S: 2 x m array

SIZE returns the size of the timescale object T. S is a (2 x m) array, where m specifies the number
of (continuous and/or discrete) intervals in the timescale. The first row contains the cumulative
lengths of the intervals, and the second row indicates whether each interval is continuous or
discrete. For example,

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

110
1052

S

implies that interval 1 is of length 2, representing continuous data. Interval 2 is of length 5-2 = 3,
representing discrete data. And interval 3 is of length 10-5 = 5, also representing discrete data.
Users may construct a size matrix and associated with a vector of data points using the timescale
constructor.

 15

subsasgn Calling Syntax: A = subsasgn (A, S, B)

 Inputs:

 A, S, B: timescale object, syntax
structure, reference structure

 Output:

 S: timescale object

SUBSASGN is the left to right time scale overload of the parenthesis operators in MATLAB. This
function enables the user to assign values to time scale objects using indexes similar to vector and
matrix assignment.

A (n) = 2 Assigns 2 to the nth element of the time scale’s data object, where n must
be a scalar within the length of the time scale data array. The time scale
may not shrink or expand under this operation.

A (2:4) = [3:5] Returns an error.

A (2:4, k) = [3:5] Assigns the values [3,4,5] to elements 2 through 4 of interval k. The
interval may shrink or expand under this operation, but more intervals
may not be added. Assignment of the empty interval A (:,n) = [] will not
delete the interval but will simply leave its contents empty.

A {n} = T Embeds time scale T as interval n in time scale A. The assignment requires
T to have only one interval. Intervals may be deleted by using the syntax
A{n} = []. If n is greater than the number of intervals in A, then A will
expand to have n intervals by filling in any missing intervals with empty
intervals of type 'd'.

 subsref Calling Syntax: B = subsref (A, S)

 Inputs:

 A, S: one time scale object, one
syntax structure

 Output:

 B: time scale object holding the product

SUBSREF is the right to left time scale overload of the parenthesis operator in MATLAB. It
returns the operation A (1) or A (2:4) where A is a time scale object. The output is a vector the
same length as the input. Also, this function returns the time scale data and type arrays as A.data
and A.type.

A (m:n) Returns a row vector containing the data in A from index m to n regardless of
interval boundaries

A (m:n, k) Returns a row vector containing the data in the k-th interval of A.

A (m:n , p:q) Returns an error.

A {n} Returns a time scale object containing the data of interval n. This is a shortcut for
S = size (A); T = timescale (A(:,n), 'd' or 'c')

 16

Other Overloaded Operations
As it would be somewhat unnecessary to document how every overloaded function works, each of the
following overloaded functions can be understood intuitively and are briefly described below.

NAME CALLING SYNTAX DESCRIPTION

conj A = conj (B)

A, B are time scale objects

Timescale overload of conj function. A is a timescale
containing the conjugates of the complex numbers in
timescale B

cos A = cos (B)

A, B are time scale objects

Timescale overload of the co-sine function. A contains point-
wise cos of timescale B. Note that this is different from tscos,
which is part of actual time scales trigonometry.

eq C = eq (A, B)

A, B, C are time scale objects

Implements the timescale equivalent of MATLAB's usual ==
logical function, C = A==B. Output C holds a timescale
object of 1's and 0's.

exp A = exp (B)

A, B, C are time scale objects

Timescale overload of exp function. A is a timescale
containing the point-wise exponential of timescale B. Note
that this is not to be confused with tsexp which is part of
actual time scales calculus.

ge C = ge (A, B)

A, B, C are time scale objects

Implements the timescale equivalent of MATLAB's usual >=
logical function, C = A>=B. Output C holds a timescale
object of 1's and 0's.

gt C = gt (A, B)

A, B, C are time scale objects

Implements the timescale equivalent of MATLAB's usual
greater-than logical function, C = A>B. Output C holds a
timescale object of 1's and 0's.

horzcat T = horzcat (T1, T2, T3...)
T = [T1 T2 T3]

T, T1, T2…are time scale
objects

Concatenates many timescales into one. Inputs must be
timescale objects. Overloads the bracket operator so that
entering T = [T1 T2 T3] returns one time scale containing
each of the time scales.

imag A = imag (B)

A, B, C are time scale objects

Timescale overload of imag function. A is a timescale
containing the imaginary part of timescale B.

le C = le (A, B)

A, B, C are time scale objects

Implements the timescale equivalent of MATLAB's usual
less-than-or-equal-to (<=) logical function, C = A<=B.
Output C holds a timescale object of 1's and 0's.

 17

length L = length (T)

L is a scalar, T is a time scale
object

Returns the length of a timescale object, meaning the total
number of data points in all intervals of T.

log A = log (B)

A, B are time scale objects

Timescale overload of log function. A contains point-wise
natural logarithm of timescale B.

lt C = lt (A, B)

A, B, C are time scale objects

Implements the timescale equivalent of MATLAB's usual
less-than (<) logical function, C = A<B. Output C holds a
timescale object of 1's and 0's.

min A = min (B)

A is a scalar; B is a time scale
object.

Overloaded min function. Returns the minimum (smallest
number) in timescale B.

minus S = minus (A, B)

A, B are either time scale
objects or scalars. S is a time
scale object.

Subtracts data in time scale objects and produces a new time
scale object holding the difference. A or B may be scalar.
Output S is a time scale object holding the difference (A – B).

mpower S = mpower (A, B)

S, A, B are time scale objects.

Identical to A .^B - allows users to -- see power(A,B)

mrdivide C = mrdivide (A, B)

A, C are time scale objects. B
is a scalar.

Called to overload the A/B syntax for timescale objects. B
must be a scalar.

ne C = ne (A, B)

A, B, C are time scale
objects.

Implements the timescale equivalent of MATLAB's usual not
equal to (~=) logical function, C = A~=B. Output C holds a
timescale object of 1's and 0's.

not B = not (A)

A, B are time scale objects.

Implements the time scale equivalent of MATLAB's usual
NOT logical operator, B = ~A. Output B holds a time scale
object of 1's and 0's.

or C = or (A, B)

A, B, C are time scale
objects.

Implements the time scale equivalent of MATLAB's usual
OR logical operator, C = A|B. Output C holds a timescale
object of 1's and 0's.

 18

plus S = plus (A, B)

A, B are either time scale
objects or scalars. S is a time
scale object.

Adds data in time scale objects and produces a new time scale
object holding the sum. A or B can be a scalar as well.

power S = power (A, B)

S, A, B are time scale objects.

Element-wise power of one timescale to another. Works if
either argument is a scalar also.

real A = real (B)

A, B are time scale objects.

Time scale overload of real function. Returns a timescale
object A containing the real part of timescale object B.

rdivide Y = rdivide (A / B)

A is a scalar. B, Y are time
scale objects.

Time scale overload of rdivide function. Returns a timescale
object Y containing the element to element division of a scalar
divided by a time scale.

sin A = sin (B)

A, B are time scale objects.

Time scale overload of sin function. A contains point-wise
sine of time scale B.

sqrt Y = sqrt (X)

X, Y are time scale objects.

Time scale overload of square root function. Executes a
point-wise square root on the data in time scale object X and
returns the result in Y.

tan A = tan (B)

A, B are time scale objects.

Timescale overload of tangent (tan) function. A contains
point-wise tangent of timescale B.

times S = times (A, B)

A, B are either time scale
objects or scalars. S is a time
scale object.

Element-wise multiply of two timescale objects to produce
another. Either argument can be a scalar also. S is the output
time scale object holding the product.

uminus A = uminus (B)

A, B are timescale objects.

Time scale overload of unary negation. A contains the
negative of B.

vertcat T = vertcat (varargin) Vertical concatenation is not defined for time scales. Hence
this function always yields an error.

 19

20

Utility Functions
The Time Scales toolbox in MATLAB is furnished with several functions
which are not only useful, but also provide a means of performing regular
mathematical operations on time scales.

Many mathematical functions which can be evaluated using real numbers cannot be evaluated the
same way on time scales. MATLAB already provides these functions for real numbers, but this
toolbox allows users to perform these operations on time scales and also do time scale calculus.

Basic Time Scale Operations
In order to do anything with time scales there are some basic operations including calculating the
graininess, the forward jump operator, the backward jump operator, and the backward graininess,
that are essential to performing more complex time scale operations.

tsbackward Calling Syntax: rho = tsbackward (T, [n])

 Inputs:

 T: time scale object
 n: (optional) jumps backward n number of

points

 Output:

 rho: time scale object containing the
backward jump solution

This function calculates the backward jump
operator, ρ(t), which is the current point in a time
scale minus the distance to the previous point.
There is an optional input, n, that allows the user to
return the nth backward jump. For continuous time
scales, t = ρ(t).

Example: Entering a discrete time scale at the right
and performing the tsbackward operation generates
a solution time scale of the same size and type.

Chapter

4

 21

tsforward Calling Syntax: sigma = tsforward (T, [n])

 Inputs:

 T: time scale object
 n: (optional) jumps forward n number of

points

 Output:

 sigma: time scale object containing the
forward jump solution

 This function calculates the forward jump operator,
σ(t), which is the current point in a time scale plus the
distance to the next point. There is an optional input, n,
that allows the user to return the nth forward jump.
For continuous time scales, t = σ(t).
Example: Entering a discrete time scale at the right and
performing the tsforward operation generates a solution
time scale of the same size and type.

tsmu Calling Syntax: mu = tsmu(T)

 Inputs:

 T: time scale object

 Output:

 mu: time scale object containing the
graininess

This function calculates the graininess, µ(t), which
is the distance from the current point to the next
point. The graininess is defined by µ(t) = σ(t) – t.
The solution is returned as a time scale of the same
size and type, however by convention the last
value will be zero. For continuous time scales, µ(t)
= 0.

Example: Entering a discrete time scale at the right
and performing the tsmu operation generates the
following solution.

 22

tsnu Calling Syntax: nu = tsnu(T)

 Inputs:

 T: time scale object

 Output:

 nu: time scale object containing the
backward graininess

This function calculates the backward graininess,
which is the distance from the current point to the
previous point. The solution is returned as a time
scale of the same size and type, however by
convention the last value will be zero. For
continuous time scales, the backward graininess
equals 0.

Example: Entering a discrete time scale at the right
and performing the tsnu operation generates the
following solution.

tsplot Calling Syntax: hndl = tsplot (X1, Y1, X2, Y2,…)
 or hndl = tsplot (varargin)

Inputs:

 varargin: multiple time scale objects

Output:

 hndl: the plot handle

TSPLOT plots time scale objects against each other, Y1 vs. X1, Y2 vs. X2, etc. Each Xn and Yn must be
compatible (same interval sizes and types).

Special syntax options:

TSPLOT is the same as TSPLOT (X1,
tszeros (size (X1))) and plots an even
number of time scales against one another.

TSPLOT (X1, Y1, S1 X2, Y2, S2…) will use
cell array S to determine the line-type for the
plot. For example,

tsplot (X, Y, {‘r*’, ‘b-’})

will plot Y vs. X with discrete intervals
showing as red stars and continuous intervals
showing as a blue line (cf. HELP PLOT for
a comprehensive list of plot options).

 23

The default behavior (no S input) is

S = {‘ . ’, ‘ - ’},

i.e. dots for discrete intervals and connecting lines for continuous intervals, both of the same color. If no
line/color styles are specified, TSPLOT will cycle through the current axis color order for each plot.

HNDL = TSPLOT (X1, Y1,…) will return a cell array HNDL containing handles to all individual
interval plots. For example, if X1 and Y1 contain a discrete interval, then a continuous interval, then
another discrete interval, then HNDL will have one element, a vector with three handles in it.

HNDL{1} = [h1, h2, h3]

where h1 is the handle to the first (discrete) interval, h2 is the handle to the second, etc. The handles for
X2 and Y2 are in cell HNDL {2} and so forth.

Additional examples of command window entries with the resulting plot are given:

 24

Time Scale Calculus Operations
Time scale mathematical operations are significantly different from real number operations. This is
emphasized when we talk about time scale calculus. In most cases, calculations for the continuous part of
a time scale are done as the usual real calculus. For example, the derivative of a continuous interval is the
usual derivate such that the Hilger derivative f ∆ is

ff ′=∆

Examined below are two important time scale calculus functions – tsexp for the time scale exponential
and tsode which is the time scale O.D.E solver.

tsexp Calling Syntax: Y = tsexp(T, alpha, [t0])

 Inputs:

 T: time scale object

 α: scalar exponent

 t0: initial value (optional)

Output:

 Y: time scale object containing the solution
of the time scale exponential.

TSEXP (T, α, t0) returns a time scale exponential of the input time scale. The commands are
illustrated below for time scale

The initial condition (t0) must be contained in T. If there is no t0 input, the first value of the timescale
T is used as the initial value. If t0 is not the first term of the timescale, the exponential (Y) of all values
before t0 is set to zero.

This function calculates the time scale exponential slightly differently from the formulae proposed by
Bohner – Peterson which includes the rather complex cylinder transformation. The implemented
calculation is split into three parts:

i. Uniform discrete interval – when the graininess of an interval is constant and non zero, the
exponential is calculated using the formula described by Bohner – Peterson [74].

ii.)(/)(0))(1()(tttttY µαµ −+=

iii. Non-uniform discrete interval – when the graininess of an interval is not constant, the
exponential is derived by recursion.

iv. Continuous interval – when the graininess is zero, the exponential is obtained using the usual
real exponential function (exp) provided by MATLAB.

v.)(0)(ttetY −= α

 25

Here are some examples of using the tsexp function:

A single continuous interval time scale with alpha = 5 and an initial value of 7.2:

A discrete, continuous, discrete type time scale with alpha = 2, and an initial value of 1:

 26

tsode Calling Syntax: Z= tsode (@f, T, Y0)

 Inputs:

 ODEFUN: file containing the differential
equation

 T: time scale object
 Y0: initial condition (number or vector)

Output:

 Z: cell array containing as many output time
scales as initial conditions.

ODEFUN is the file that contains the ODE function. It returns a number or vector (according to
the order of the D.E.), that contains dy values. The initial condition (Y0) is a number for a first order
D.E. When the order is greater than one, the initial condition input is a vector with N members.
The output Z is a cell array that contains N output time scales (Y1, Y2, Y3…) corresponding to
each initial condition.

This function integrates the system of differential equations y’ = f (t, y) from time t0 to tf in the
timescale T with initial condition(s) Y0. The solution is obtained differently for continuous and
discrete intervals:

i. Discrete Interval: when the interval is discrete, the solution is obtained by a recursive
difference method:

)()())(()1(tyttyftY +×=+ µ

where)1(+tY is the next value in the solution time scale,))((tyf is the result of the
current solution passed through the function contained in the ODE file (f) and)(tµ is the
graininess of the time scale T.

ii. Continuous Interval: in this case, the differential equation is solved using the ODE23 solver
provided by MATLAB which solves non-stiff differential equations using the low order
method.

Accessing the Output Data (Cell Array):

The function stores the output into a cell array, requiring the user to access the data output by
calling the corresponding element of the cell array. In a first order ODE there is only one element
in the cell array, and in a second order ODE there are two elements, likewise for each type of
differential equation. To access the elements of the cell array for a second order ODE, view the

figure below:

Y{1}: accesses the data for the dy1
equation

Y{2}: accesses the data for the dy2
equation

 27

Examples of using the tsode function are given below:

Here is the solution of a first
order differential equation using
a discrete, continuous, discrete
type time scale and the equation

dy = -0.05 * y

Here is a solution of a second order differential equation using a discrete, continuous, discrete time
scale and the second order equation

dy1 = y1 + y2
dy2 = -y2 + cos(y1)

Plot of Y{1} Plot of Y{2}

 28

The tsode function automatically passes the graininess to the user-defined function. This allows the
user to create differential equations that involve the graininess. One example of using the graininess
in a single order differential equation is given below.

Here is a plot of the solution to
the ordinary differential
equation using the graininess.

After viewing these two plots one can
reason that if the two are multiplied they
should produce a solution of 1’s, which
is verified at left.

 29

Trigonometric & Hyperbolic Functions
The trigonometric functions sine, cosine, hyperbolic sine, and hyperbolic cosine exist on time scales
but are calculated slightly different than their counterparts on real numbers.

tscos Calling Syntax: Y = tscos(T, alpha, [t0])

 Inputs:

 T: time scale object

 α: scalar exponent

 t0: initial value (optional)

Output:

 Y: time scale object containing the solution
to the time scale cosine

TSCOS (T, α, t0) returns a time scale cosine of T.

This function calculates the time scale cosine using the formula:
2

cos ipip
p

ee −+
= .

Example: Entering the mixed type time
scale interval above, generates the plot to
the right. Notice how the amplitude
grows for a discrete interval and produces
a typical cosine wave for a continuous
interval.

Entering a continuous time scale interval
into the tscos function generates a typical
cosine wave on real numbers.

The function discards imaginary values
and returns only real valued results.

tscosh Calling Syntax: Y = tscosh(T, alpha, [t0])

 Inputs:

 T: time scale object

 α: scalar exponent

 t0: initial value (optional)

Output:

 Y: time scale object containing the
solution to the time scale hyperbolic cosine

 30

TSCOSH (T, α, t0) returns a time scale hyperbolic sine of T.

This function calculates the time scale sine using the formula,
2

cosh pp
p

ee −+
= .

Example: Entering the discrete
timescale at right, and plotting the
timescale hyperbolic cosine against
the original timescale yields the
exponential curve to the right.

When considering the formula used to
calculate the time scale hyperbolic
cosine, the plotted graph is easy to
understand.

The initial value input is an optional
input that must be contained in the time
scale. If the initial value is not the first
point of the time scale, the function will
fill every point preceding the initial value
with zeros.

tssin Calling Syntax: Y = tssin(T, alpha, [t0])

 Inputs:

 T: time scale object

 α: scalar exponent

 t0: initial value (optional)

Output:

 Y: time scale object containing the solution
to the time scale sine

TSSIN (T, α, t0) returns a time scale sine of T.
This function calculates the time scale sine using

the formula:
i
ee ipip

p 2
sin −−

= .

Example: Entering the discrete time scale
interval to the right, performing the
sine function, and plotting the
results produces the following graph
at right. The amplitude is dependent
on µp2 , so in discrete calculations
the amplitude increases with µ.

The function discards imaginary values and returns only real valued results.

 31

Entering a continuous time scale interval into the tssin function generates a typical sine wave on real
numbers.

The following multiple interval, multiple type time scale and plotting the solutions against one
another will yield the graph below.

tssinh Calling Syntax: Y = tssinh(T, alpha, [t0])

 Inputs:

 T: time scale object

 α: scalar exponent

 t0: initial value (optional)

Output:

 Y: time scale object containing the solution
to the time scale hyperbolic sine

TSSINH (T, α, t0) returns a time scale hyperbolic sine of T.

 32

This function calculates the time scale sine using the formula,
2

sinh pp
p

ee −−
= .

Example: Entering the discrete timescale at below, and plotting the timescale hyperbolic
sine against the original timescale yields the exponential curve below.

When considering the formula
used to calculate the time scale
hyperbolic sine, the plotted
graph is easy to understand.

The initial value input is an
optional input that must be
contained in the time scale. If
the initial value is not the first
point of the time scale, the
function will fill every point
preceding the initial value with
zeros.

 33

 Example Time Scale Functions
Example functions were written to create example time scales which are useful. These are time scales
commonly found in timescale calculus, hence, frequently used in testing and calculations.

tsharmonic Calling Syntax: Y = tsharmonic (n)

 TSHARMONIC (N) is a harmonic time scale with N points. The commands and plot are
illustrated below for time scale

 T = tsharmonic (50); tsplot (T)

tspab Calling Syntax: Y = tspab(a, x, b, n)

 Inputs:
 a: length of intervals
 x: graininess of the cont. interval
 b: length of jump
 n: number of a-b pairs

 TSPAB (A, X, B, N) returns a time
scale of the form P (a, b). P (a, b)
contains N continuous intervals of
length A separated by a jump of length
B. X is the graininess of the
continuous interval.

 For example, consider:
 T = tspab (2, 1, 2, 4)

 34

tsqz Calling syntax: Y = tsqz(q, a, b, h)

 Inputs:
 q: scalar
 a: initial value in Z
 b: final value in Z
 h: (optional) graininess

TSQZ (Q, A, B, H) returns a time
scale object of the form qhZ where Z
is the set of all integers and h is the
graininess. Z goes from A to B. H is
an optional input; when H is not
entered, its default value is 1. The
timescale

T = tsqz (2, 5, 10, 1)

is purely discrete, yielding the plot to
the right.

 35

Miscellaneous Time Scale Functions
These functions prove to be useful to use inside other functions.

tscircminus Calling Syntax: Y = tscircminus(z , T)

TSCIRCMINUS (z , T) returns a timescale
object containing the solution to the circle
minus operation of a scalar and a given time
scale. The function uses the equation from
Bohner-Peterson:

zt
zz

)(1 µ+
−

=Θ .

The function finds the graininess of the
time scale and uses it to perform
calculations. The last value of the timescale
is based on a graininess of 0 and simply
returns a z− .

tsfind Calling Syntax: Y = tsfind(T)

TSFIND (T) returns instances of nonzero entries in the time scale object T, such that T(I)
returns the nonzero values. The optional flag output indicates whether the corresponding
indices point to a continuous (FLAG = 0) or discrete (FLAG = 1) interval. TSFIND returns
empty if there are no nonzero entries in T.

 For example, consider

T = timescale([1:4],'c',[4.1:0.1:4.5],'d', [10:1:13],'c')

 [I, flag] = find(T)

 36

tszeros Calling syntax: Y = tszeros(T)

TSZEROS (T) requires an input time scale T and returns a time scale exactly like T, but filled
with zeros instead of the t values of T.

For example:

 T = timescale([1:4], 'd',[5:7], 'c', [8 9], 'd')

 Y = tszeros(T)

 37

Index

abs, 9
and, 10
angle, 10
conj, 16
cos, 16
display, 11
eq, 16
exp, 16
find, 11
ge, 16
gt, 16
horzcat, 16
imag, 16
incompatible, 12
isdiscrete, 13
le, 16
length, 17
log, 17
lt, 17
min, 17
minus, 17
mpower, 17
mrdivide, 17
mtimes, 14
ne, 17
not, 17
or, 17
plus, 18

power, 18
rdivide, 18
real, 18
sin, 18
size, 14
sqrt, 18
subsasgn, 15
subsref, 15
tan, 18
times, 18
tsbackward, 20
tscircminus, 35
tscos, 29
tscosh, 29
tsexp, 24
tsfind, 35
tsforward, 21
tsharmonic, 33
tsmu, 21
tsnu, 22
tsode, 26
tspab, 33
tsqz, 34
tssin, 30
tssinh, 31
tszeros, 36
uminus, 18
vertcat, 18

