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Abstract 
This paper presents an artificial neural network(ANN) 

approach to  electric load forecasting. The ANN is used 
to learn the relationship among past, current and future 
temperatures and loads. In order to  provide the fore- 
casted load, the ANN interpolates among the load and 
temperature data in a training data set. The average 
absolute errors of the one-hour and 24-hour ahead fore- 
casts in our test on actual utility data are shown to be 
1.40% and 2.06%, respectively. This compares with an 
average error of 4.22% for 24hour ahead forecasts with a 
currently used forecasting technique applied to  the same 
data. 
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1 Introduction 
Various techniques for power system load forecasting have 
been proposed in the last few decades. Load forecast- 
ing with lead-times, from a few minutes to  several days, 
helps the system operator to  efficiently schedule spinning 
reserve allocation. In addition, load forecasting can pro- 
vide information which is able to  be used for possible 
energy interchange with other utilities. In addition to 
these economical reasons, load forecasting is also useful 
for system security. If applied to  the system security as- 
sessment problem, it can provide valuable information to 
detect many vulnerable situations in advance. 

Traditional computationally economic approaches, 
such as regression and interpolation, may not give suffi- 
ciently accurate results. Conversely, complex algorithmic 
methods with heavy computational burden can converge 
slowly and may diverge in certain cases. 

A number of algorithms have been suggested for the 
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load forecasting problem. Previous approaches can be 
generally classified into two categories in accordance with 
techniques they employ. One approach treats the load 
pattern as a time series signal and predicts the future load 
by using various time series analysis techniques [I-71. The 
second approach recognizes that the load pattern is heav- 
ily dependent on weather variables, and finds a functional 
relationship between the weather variables and the sys- 
tem load. The future load is then predicted by inserting 
the predicted weather information into the predetermined 
functional relationship [8-111. 

General problems with the time series approach in- 
clude the inaccuracy of prediction and numerical insta- 
bility. One of the reasons this method often gives inac- 
curate results is. that it does not utilize weather infor- 
mation. There IS a strong correlat~on between the be- 
havior of power consumption and weather variables such 
as temperature, humidity, wind speed, and cloud cover. 
This is especially true in residential areas. The time 
series approach mostly utilizes computationally cumber- 
some matrix-oriented adaptive algorithms which, in cer- 
tain cases, may be unstable. 

Most regression approaches try to find functional re- 
lationships between weather variables and current load 
demands. The conventional regression approaches use 
linear or piecewise-linear representations for the forecast- 
ing functions. By a linear combination of these repre- 
sentations, the regression approach finds the functional 
relationships between selected weather variables and load 
demand. Conventional techniques assume, without justi- 
fication, a linear relationship. The functional relationship 
between load and weather variables, however, is not sta- 
tionary, but depends on spatio-temporal elements. Con- 
ventional regression approach does not have the versa- 
tility to address this temporal variation. It, rather, will 
produce an averaged result. Therefore, an adaptable tech- 
niaue is needed. 

In this paper, we present an algorithm which combines 
both time series and regressional approaches. Our algo- 
rithm utilizes a layered perceptron artificial neura l  net- 
work (ANN). As is the case with time series approach, 
the ANN traces previous load patterns and predicts(2.e. 
extrapolates) a load pattern using recent load data. Our 
algorithm uses weather information for modeling. The 
ANN is able to perform non-linear modeling and adap- 
tation. It does not require assumption of any functional 
relationship between load and weather variables in ad- 
vance. We can adapt the ANN by exposing it to new 
data. The ANN is also currently being investigated as a 
tool in other power system problems such as security as- 
sessment, harmonic load identification, alarm processing, 
fault diagnosis, and topological observability [12-181. 
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In the next section, we briefly review various load fore- 
casting algorithms. These include both the time series 
and regression approach. The generalized Delta rule used 
to  train the ANN is shown in Section 3. In Section 4, 
we define the load forecasting problems, show the topolo- 
gies of the ANN used in our simulations, and analyze the 
performance in terms of errors (the differences between 
actual and forecasted loads). A discussion of our results 
and conclusions are presented in Section 5. 

2 Previous Approaches 

2.1 Time Series 
The idea of the time series approach is based on the un- 
derstanding that a load pattern is nothing more than a 
time series signal with known seasonal, weekly, and daily 
periodicities. These periodicities give a rough prediction 
of the load a t  the given season, day of the week , and time 
of the day. The difference between the prediction and the 
actual load can be considered as a stochastic process. By 
the analysis of this random signal, we may get more ac- 
curate prediction. The techniques used for the analysis 
of this random signal include the Kalman filtering [I], 
the Box-Jenkins method [3,4], the auto-regressive mov- 
ing average (ARMA) model [2], and spectral expansion 
technique 151. . . 

The Kalman filter approach requires estimation of a 
covariance matrix. The possible high nonstationarity of 
the load pattern, however, typically may not allow an 
accurate estimate to  be made [6,7]. 

The Box-Jenkins method requires the autocorrelation 
function for identifying proper ARMA models. This can 
be accomplished by using pattern recognition techniques. 
A major obstacle here is its slow performance [2]. 

The ARMA model is used to describe the stochastic 
behavior of hourly load pattern on a power system. The 
ARMA model assumes the load a t  the hour can be esti- 
mated by a linear combination of the previous few hours. 
Generally, the larger the data set, the better is the result 
in terms of accuracy. A longer computational time for the 
parameter identification, however, is required. 

The spectral expansion technique utilizes the Fourier 
Series. Since load pattern can be approximately con- 
sidered as a periodic signal, load pattern can be decom- 
posed into a number of sinusoids with different frequen- 
cies. Each sinusoid with a specific frequency represents 
an orthogonal base [19]. A linear combination of these 
orthogonal basis with proper coefficients can represent 
a perfectly periodic load pattern if the orthogonal ba- 
sis span the whole signal space. However, load patterns 
are not perfectly periodic. This technique usually em- 
ploys only a small fraction of possible orthogonal basis set, 
and therefore is limited to  slowly varying signals. Abrupt 
changes of weather cause fast variations of load pattern 
which result in high frequency components in frequency 
domain. Therefore, the spectral expansion technique can 
not provide any accurate forecasting for the case of fast 
weather change unless sufficiently large number of base 
elements are used. 

Generally, techniques in time series approaches work 
well unless there is an abrupt change in the environmental 
or sociological variables which are believed to affect load 
pattern. If there is any change in those variables, the 
time series technique is no longer useful. On the other 
hand, these techniques use a large number of complex 

relationships, require a long computational time [20] and 
result in a possible numerical instabilities. 

2.2 Regression 
The general procedure for the regression approach is: 1) 
select the proper and/or available weather variables, 2) 
assume basic functional elements, and 3) find proper co- 
efficients for the linear combination of the assumed basic 
functional elements. 

Since temperature is the most important information 
of all weather variables, it is used most commonly in the 
regression approach (possibly nonlinear). However, if we 
use additional variables such as humidity, wind velocity, 
and cloud cover, better results should be obtained. 

Most regression approaches have simply linear or piece- 
wise linear functions as the basic functional elements [8- 
11, 21-23]. A widely used functional relationship between 
load, L, and temperature, T, is 

where 
1, i f T 2 O  

u ( T )  = { 0 , otherwise 

and ai,  Til, Ti2, and C are constant, 
and Til > Tiz for all i. 

The variables (L, a;, T, Til, Ti2, and C )  are temporally 
varying. The time-dependency, however, is not explicitly 
noted for reasons of notational compactness. 

After the basic functional forms of each subclass of tem- 
perature range are decided, the proper coefficients of the 
functional forms are found in order to  make a represen- 
tative linear combination of the basic functions. 

Approaches other than regression have been proposed 
for finding functional coefficients: 

1. Jabbour e t  al.[ll] used a pattern recognition tech- 
nique to find the nearest neighbor for best 8 hourly 
matches for a given weather pattern. The corre- 
sponding linear regressiuu coefficients were used. 

2. An application of the Generalized Linear Square Al- 
gorithm(GLSA) was proposed by Irisarri et  a1.[23]. 
The GLSA, however, is often faced with numerical 
instabilities when applied to  a large data base. 

3. Rahman e t  a1.[10] have applied an expert system ap- 
proach. The expert system takes the advantages of 
the expert knowledge of the operator. It makes many 
subdivisions of temperature range and forms differ- 
ent functional relationships according to the hour of 
interest. It shows fairly accurate forecasting. As 
pointed out in the discussion of [lo] by Tsoi, it is 
not easy to  extract a knowledge base from an expert 
and can be rather difficult for the expert to articulate 
their experience and knowledge. 

4. Lu et al.[24] utilize the modified Gram-Schmidt or- 
thogonalization process (hfGSOP) to find an orthog- 
onal basis set which spans the output signal space 
formed by load information. The MGSOP requires a 
predetermined cardinality of the orthogonal basis set 
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Figure 1: Structure of a Three-Layered Perceptron Type 
ANN 

and the threshold value of error used in adaptation 
procedure. If the cardinality of the basis set is too 
small or the threshold is not small enough, the accu- 
racy of the approach suffers severely. On the other 
hand, if the threshold is too small, numerical insta- 
bility can result. The MGSOP also has an ambiguity 
problem in the sequence of input vectors. Different 
exposition of input vectors result in different sets of 
orthogonal basis and different forecasting outputs. 

3 A Layered ANN 

3.1 Architecture 
An ANN can be defined as a highly connected array of el- 
ementary processors called neurons. A widely used model 
called the multi-layered perceptron(MLP) ANN is shown 
in Figure 1. The MLP type ANN consists of one input 
layer, one or more hidden layers and one output layer. 
Each layer employs several neurons and each neuron in 
a layer is connected to  the neurons in the adjacent layer 
with different weights. Signals flow into the input layer, 
pass through the hidden layers, and arrive a t  the out- 
put layer. With the exception of the input layer, each 
neuron receives signals from the neurons of the previous 
layer linearly weighted by the interconnect values between 
neurons. The neuron then produces its output signal by 
passing the summed signal through a sigmoid function 
[12-181. 

A total of Q sets of training data are assumed to  be 
available. Inputs of {TI, z2, . . . , zQ} are imposed on the 
top layer. The ANN is trained to  respond to the cor- 
responding target vectors, {c., &, . . . , &), on the bottom 
layer. The training continues until a certain stop-criterion 
is satisfied. Typically, training is halted when the aver- 
age error between the desired and actual outputs of the 
neural network over the Q training data sets is less than 
a predetermined threshold. The training time required is 
dictated by various elements including the complexity of 
the problem, the number of data, the structure of net- 
work, and the training parameters used. 

In this paper, the generalized Delta rule (GDR) [25,26] is 
used to train a layered perceptron-type ANN. An output 
vector is produced by presenting an input pattern to the 
network. According to the difference between the pro- 
duced and target outputs, the network's weights {Wij) 
are adjusted to  reduce the output error. The error at the 
output layer propagates backward to the hidden layer, 
until it reaches the input layer. Because of backward 
propagation of error, the GDR is also called error back 
propagation algorithm. 

The output from neuron i, Oi, is connected to the in- 
put of neuron j through the interconnection weight Wij. 
Unless neuron k is one of the input neurons, the state of 
the neuron t is: 

where f (2) = l / ( l +  e-"), and the sum is over all neurons 
in the adjacent layer. Let the target state of the output 
neuron be t .  Thus, the error a t  the output neuron can be 
defined as 

where neuron k is the output neuron. 
The gradient descent algorithm adapts the weights ac- 

cording to the gradient error, i.e., 

Specifically, we define the error signal as 

With some manipulation, we can get the following GDR: 

where 6 is an adaptation gain. 6 j  is computed based on 
whether or not neuron j is in the output layer. If neuron 
j is one of the output neurons, 

If neuron j is not in the output layer, 

In order to  improve the convergence characteristics, we 
can introduce a momentum term with momentum gain cu 
to Equation 7. 

where n represents the iteration indl . 
Once the neural network is trail11 I I  produces very 

fast output for a given input data. 1 1  only requires a 
few multiplications, additions, and calculations of sigmoid 
function [14]. 



Table 1: Test Data Sets 

4 Test Cases and Results 
Hourly temperature and load data for Seattle/Tacoma 
area in the interval of Nov. 1, 1988 - Jan. 30, 1989 were 
collected by the Puget Sound Power and Light Company. 
We used this data to  train the ANN and test its perfor- 
mance. Our focus is on a normal weekday (i.e. no holiday 
or weekends). 

Table 1 shows five sets used to test the neural network. 
Each set contains 6 normal days. These test data were not 
used in the training process of the neural network. This 
approach of classifier evaluation is known as a jack-knife 
method. 

The ANN was trained to recognize the following cases: 

Case 1: Peak load of the day 

Case 2: Total load of the day 

Case 3: Hourly load 

where 

Peak load a t  day d = max (L(1, d), . . . , L(24, d)) (11) 

24 

Total load a t  day d = L(h, d) 
h = l  

(12) 

L(h, d) is the load a t  hour h on day d. 
The neural network structures used in this paper, in- 

cluding the size of the hidden layer, were chosen from 
among several structures. The chosen structure is the 
one that gave the best network performance in terms of 
accuracy. In most cases, we found that adding one or 
two hidden neurons did not significantly effect the neural 
network accuracy. 

To evaluate the resulting ANN'S performance, the fol- 
lowing percentage error measure is used throughout this 
paper: 

I actual load - forecasted load ( 
error = 

actual load 
x 100 (13) 

4.1 Case 1 
The topology of the ANN for the peak load forecasting is 
as follows; 

Input neurons: Tl(k), T2(k), and T3(k) 
Hidden neurons: 5 h~dden neurons 
Out,put neuron : L(k) 

where 
k = day of predicted load, 
L(k) = peak load a t  day k, 

= average temperature a t  day k, 
= peak temperature a t  day k, 
= lowest temperature a t  day k. 

Table 2: Error(%) of Peak Load Forecasting 

- -  ~ 

Table 3: Error(%) of Total Load Forecasting 

- - 

Table 2 shows the error(%) of each day in the test sets. 
The average error for all 5 sets is 2.04 %. 

4.2 Case 2 
The topology of the ANN for the total load forecasting is 
as follows; 

Input neurons: Tl(k) ,  T2(k), and T3(k) 
Hidden neurons: 5 hidden neurons 
Output neuron : L(k) 

where 
k = day of predicted load, 
L(k) = total load a t  day k, 

= average temperature a t  day k, 
= peak temperature at day k, 
= lowest temperature a t  day k. 

Table 3 shows the error(%) of each day in test sets. The 
average error for all 5 sets is 1.68 %. 

4.3 Case 3 
The topology of the ANN for the hourly load forecasting 
with one hour of lead time is as follows; 

Input neurons: k, L(k-2), L(k-1), 
T(k-2 , T(k-1), and ?(k) 

Hidden neurons: 10 hi den neurons 
Output neuron : L(k) 

d 
k = hour of predicted load 
L(x) = load a t  hour x, 
T(x) = temperature a t  hour x, 
T(x) = predicted temp. for hour x 

In training stage, T(x) was used instead of Ti'(x). The 
lead times of predicted temperatures, T(x), vary from 16 
to 40 hours. 

Table 4 shows the error(%) of each day in the test sets. 
The average error for all 5 sets is found to be 1.40 %. 
Note that each day's result is averaged over a 24 hour 
period. 



Table 4: Error(%) of Hourly Load Forecasting 
with One Hour Lead Time 

(*: Predicted temperatures, ;i', are not available.) 

In order to  find the effect of the lead time on the. ANN 
load forecastmg, we used set 2 whose performance in Ta- 
ble 4 was the closest to  the average. The lead time was 
varied from 1 to 24 hours with a 3 hour interval. The 
topology of ANN was as follows: 

input neurons : k, L(24,k), T(24,k), 
L m,k), T(m,k), and T(k) 

hidden neurons : 1 (h idden neuron 
ouput neuron : L(k) 

where 
k = hour of predicted load 
m = lead time, 
L(x,k) = load x hours before hour k 
T(x,k) = temperature x hours before hour k 
T(k) = predicted temperature for hour k 

In the training stage, T(x) was used instead of F(x). The 
lead times of predicted temperatures, ?(x), vary from 16 
to 40 hours. 

Figure 2 shows examples of the hourly actual and fore- 
casted loads with one-hour and 24-hour lead times. Fig- 
ure 3 shows the average errors (%) of the forecasted loads 
with different lead hours for test set 2. 

From Figure 3, the error gradually increases as the lead 
hour grows. This is true up to  18 hours of lead time. One 
of the reasons for this error pattern is the periodicity of 
temperature and load pattern. Even though they are not 
quite the same as those of the previous day, the temper- 
ature and system load are very similar to those of the 
previous day. 

We compare our results with the prediction of Puget 
Sound Power and Light Co. (PSPL) in Figure 4. Since 
the PSPL forecasts loads with lead times of 16- to  40- 
hour, there are 3 overlaps(l8-, 21-, and 24-hour) with our 
results. As shown in Figure 4, the average errors for the 
18-, 21- and 24-hour lead times are 2.79, 2.65, and 2.06 %, 
respectively. This compares quite favorably with errors of 
2.72, 6.44, and 4.22 % (18-, 21-, and 24-hour lead times) 
obtained by current load forecasting technique using the 
same data from PSPL [27]. The current load forecasting 
method, in addition, uses cloud cover, opaque cover, and 
relative humidity information. 

5 Conclusions 
We have presented an electric load forecasting methodol- 
ogy using an artificial neural network(ANN). This tech- 
nique was inspired by the work of Lapedes and Farber 
[28]. The performance of this technique is similar to  the 
ANN with locally tuned receptive field [29]. We find it no- 

Hours 
(a) Jan. 24,1989 

Hours 
(b) Jan. 27,1989 

Figure 2: Hourly Load Forecasting and Actual Load 
(in MW) (solid: actual load, dash: 1-hour lead 
forecast, dot: 24hour lead forecast) 

table that Moody and Darken's technique is remarkably 
similar to the estimation of Gaussian mixture models. 

The results shows that the ANN is suitable to inter- 
polate among the load and temperature pattern data of 
training sets to  provide the future load pattern. In order 
to forecast the future load from the trained ANN, we need 
to use the recent load and temperature data in addition 
to the predicted future temperature. Compared to the 
other regression methods, the ANN allows more flexible 
relationships between temperature and load pattern. A 
more intensive comparison can be found in [30]. 

Since the neural network simply interpolates among the 
training data, it will give high error with the test data 
that is not close enough to any one of the training data. 

In general, the neural network requires training data 
well spread in the feature space in order to  provide highly 
accurate results. The training times required in our ex- 
periments vary, depending on the cases studied, from 3 
to 7 hours of CPU time using the SUN SPARK Station 
1. However, a trained ANN requires only 3 to  10 millisec- 
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Figure 3: Mean(m) and Standard Deviation(a) 
of Errors Vs. Lead Time 
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Figure 4: Mean and Standard Deviation of Errors: 
ANN Vs. Conventional Technique Used 
in PSPL 

onds for testing. 
The neural network typically shows higher error in the 

days when people have specific start-up activities such as 
Monday (for example, on day 1 of set 1 in Table 2), or 
variant activities such as during the holiday seasons (for 
example, on days 4 & 5 of set 3 in Table 3). In order to  
have more accurate results, we may need to have more 
sophisticated topology for the neural network which can 
discriminate start-up days from other days. 

We utilize only temperature information among 
weather variables since it is the only information avail- 
able to us. Use of additional weather variables such as 
cloud coverage and wind speed should yield even better 
results. 
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Discussion 

0. A. Mohammed (Florida International University Miami, FL): The 
authors are to be thanked on their excellent work applying this new ANN 
technique to load forecasting. I would like the authors to clarify or explain 
the followings points: 

1. The authors presented a new method for load forecast which shows a 
promise for providing accurate forecasts. This discussor feels that 
the ANN method would be adequate for providing the base forecast 
which might be combined with an expert system approach to fine 
tune the load forecast for additional factors. 

2. I f  one experiments with additional factors which may affect the load 
forecast such as humidity, load inertia, wind velocity, etc., how 
much additional training time would be required compared with the 
data size. 

3. The authors presented results for hourly load forecast for weekdays 
but not weekends because of  the variation in  load pattern. Wil l  this 
be handled by a separate neural network? and if so, how would i t  be 
combined with previous day forecasts. For example, to forecase 
Monday's load. 

4. Have the authors experimented with different ANN architectures 
other than the ones explained in  the paper. I t  seems to this discussor 
that the proposed architectures wi l l  not work all the time or i t  may 
yield larger errors because of  the continual change in  weather and 
load information. May be a methodology which updates the weights 
o f  the ANN based on the new short term weather and load informa- 
tion. 

Manuscript received August 13, 1990. 

M. A. El-Sharkawi and M. J. Damborg: The authors would like to thank 
the discusser for their interest and encouraging comments. The research 
work reported in this paper is preliminary. Several key issues, such as 
those raised by the discusser, need to be carefully addressed before a 
viable electric load forecasting system is deployed. The purpose of the 
paper, however, is to investigate the potentials of the Neural Network 
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(NN) in load forecasting. Future work should certainly address questions 
related to weather conditions, distinct load profiles, cold snaps, etc. 

To respond to the specific issues raised by the reviewer, we would like to 
offer the following comments: 

1. The role of expert systems in NN environment, and vise versa, is a topic 
that is being proposed for several applications. In load forecasting 
applications, as an example, the selection of relevant training sets from 
load and weather data base is currently accomplished manually and off- 
line. Also, the convergency of the NN is currently observed and 
controlled at only discrete training steps. These functions, for example, 
may be effectively accomplished by a supervisory layer employing a rule- 
based system. 

2. Other weather variables such as wind speed and humidity may result in 
more accurate load forecasting. The problem, however, is that the 
forecasting errors of these variables are usually high which may lead to a 
biased training or erroneous network. 

3. Except for Tuesday to Thursday, the load profile of the each other day 
of the week is distinct. For example, the profile of Monday morning 
include the "pickup loads". Due to these differences in load profiles, we 
have used one NN for the days with similar load profiles and one NN for 
each day with distinct load profile. 

When we forecasted the electric loads of Saturday, Sunday or Monday, 
we used weather and load data obtained up to Friday moining (9:OO am) 
to conform with Puget Power practice. 

4. We have tried several architectures for load forecasting. The key issue 
in selecting a particular NN configuration is to achieve low training error 
without "memorization". This can be accomplished by first selecting an 
over sized network then "prune" the network to eliminate any 
memorization problem that might exist without jeopardizing the training 
accuracy. 

Manuscript received September 2 3 ,  1990. 


