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Forward 

The future status of artificial neural networks as an algo- 
rithmically and architecturally competitive computational 
technology will be based upon performance and imple- 
mentation. In both regards, the artificial neural network 
must be shown to be superior to  other, possibly more 
conventional, approaches. 

Circuits and Devices Magazine is featuring three overview 
articles on  the current status of artificial neural network 
implementation technology. The following paper by Graf 
and Jackel is the first of these papers and describes the 
current status of analog electronic implementation of artificial 
neural networks. Subsequent papers will describe photonic 
and  digital implementation. The trilogy will provide a 
quality overview of current work in this exciting field of 
emerging technology 

Robert J. Marks II* 

Introduction 

The latest wave of interest in connectionist neural net- 
work models has been fueled by new theoretical results 
and by advances in computer technology that make it pos- 
sible to simulate networks of much higher complexity than 
was possible before. Moreover, microelectronic technology 
has reached a stage where large neural networks can be 
integrated onto a single chip. As early as the 1960s analog 
network circuits were built that demonstrated collective 
computation and learning (see [1-21). However, these net- 
works had to use discrete components, and networks with 
just a few neurons resulted in very bulky circuits. This 
limited the size of networks that could be built, hence their 
computing power. 

Today, a rapidly growing number of researchers are 
working on hardware implementation of neural network 
models. Four years ago, about five groups in the U.S. were 
building electronic neural networks and a similar number 
were implementing optical networks. In 1988, at several 
conferences devoted to neural networks, some 50 groups 
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presented circuits or proposed designs, most of them from 
the U.S. but several from Europe and a few from Japan. 

Electronic neural networks rely on strongly simplified 
models of neurons. It  is generally assumed that the com- 
puting power of neural systems, electronic or biological, 
arise from the collective behavior of large, highly intercon- 
nected, fine-grained networks. An individual node, a neu- 
ron, does only very simple computations. Fig. 1 shows a 
simplified neural model consisting of the processing node 
(amplifier) interconnected to other neurons by resistors. 
The activity level of a neuron is its output voltage. The 
neuron i gets input from a neuron j through a resistor with 
the conductanceT,,. This conductance is referred to as the 
connection strength or the connection weight. If the voltage 
of the input wire is held at ground (e.g., in a virtual ground 
arrangement) then the signals coming from other neurons 
are currents with values of: 

I,, = Vout, T,, (1) 

current flowing from neuron J to neuron I 1,) 

TI, 

Vout, output voltage of neuron 

connection strength between neuron I and neu- 

ron J 

(conductance of the resistor) 

All the currents coming from the other neurons are 
summed on the input wire and the output voltage of the 
neuron is a function of this total current. Typically, the 
amplifier has a nonlinear transfer characteristic, it can be a 
hard threshold or a smoother sigmoid. The output voltage 
of neuron 1 IS given by 

I \  I \  

I I J  I ‘ J  

Vout, = t ( c L,) = t ( c Vout, T,J (2) 

f: transfer function of the amplifier (neuron) 

Equation ( 2 )  shows that computing sums of products is a 
key operation performed by the network and a hardware 
implementation has to focus on doing this efficiently. Very 
often only modest precision is required so that it is possible 
to use analog computation for this task. In an analog net- 
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work, a single resistor can perform a multiplication using 
Ohm’s law, and summing of currents on a wire is provided 
by Kirchhoff‘s law. Therefore, an analog circuit that com- 
putes sums of products can be built much more compactly 
than a digital circuit. 

The operation performed by a whole network is deter- 
mined by the connection weights T,,. The large computa- 
tional power of a whole network results from the parallel 
operation of a large number of these model neurons. A 
major difference between a neuron and a digital gate is the 
high fan-in and fan-out of the neuron. A biological neuron 
is typically connected to several thousand other neurons. 
Such a high interconnectivity is very difficult to achieve in 
an electronic circuit since a huge number of connections 
and wires are required and all the wiring has to be placed 
on the two-dimensional surface of a chip. However, elec- 
tronic networks do  exist that interconnect a few hundred 
neurons. 

What Are Neural Networks Good For? 

Neural networks are of particular interest for cognitive 
tasks or control problems. Most of the problems neural 
networks have been applied to lie in one of the following 
areas: 

Machine vision 
Speech recognition 
Robotics, Control 
Expert systems 

These are a few of the areas where conventional computers 
perform very poorly compared to our brains. 

In many cognitive tasks such as vision, large amounts of 
data with a low information content have to be processed. 
For example, consider the task of identifying an object in 
an image of several hundred thousand pixels. The object’s 
position and its orientation is information that can be en- 
coded in just a few bits. Reducing the data in the image 
down to the relevant part is a problem that is not well 
suited for standard computers. The processor has to plow 
through all the pixel data, performing operations with a 
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very high precision on pixels that are mostly meaningless. 
Highly interconnected neural networks, on the other hand, 
provide an architecture that is very effective in extracting 
correlations among image pixels. 

All the problems neural networks solve can also be solved 
with alternative methods, and many algorithms have been 
developed for the tasks mentioned above. But evidence is 
mounting that neural networks can provide the most effi- 
cient solution for some classes of problems (see reports on 
speech recognition and vision in [3]). 

The effectiveness of a neural network algorithm strongly 
depends on the hardware that executes it. In simulations 
on a computer one has to step time-sequentially through 
each interconnection to update the state of a neuron, a 
process that is painfully slow when the number of inter- 
connections is large. Only with special purpose hardware 
can one hope to exploit the parallelism inherent in neural 
network models. So far, most applications of neural net- 
works have been simulations on standard computers. Most 
analog hardware implementations are still in the research 
stage and only a few designs have been applied to “real 
world” applications. 

Computing with Analog Networks 

In the following paragraphs circuits implementing sev- 
eral different ”neural” algorithms are described. 

Template Matching 

A very efficient use of the circuit shown in Fig. 1 is tem- 
plate matching. In this application a pattern is compared 
with a list of templates stored in a network organized as 
shown in Fig. 2, and the similarities between the input 
pattern and the stored templates are computed. Equation 
(2) shows that the model neuron can be used to compute 
inner products of vectors. If the connections T,, along the 
input wire of a neuron represent the components of one 
vector and the inputs represent the components of the other 
vector, then the current flowing into a neuron is propor- 
tional to the inner product of the two vectors: 

I I1 

a- vector (pattern) with components represented by the 

0 b-  vector (template) with components represented by 
inputs 

the connections 

This is a very useful operation with many applications in 
pattern recognition. The network can compute a large 
number of inner products in parallel which makes it a very 
powerful processor. A microelectronic neural network per- 
forming this operation has been used with good success as 
a coprocessor of a workstation in pattern recognition ex- 
periments. [4] 

Associative Memory 

In a conventional memory each stored word is retrieved 
by providing its address. In an associative memory there 
is no address per se; a memory word is retrieved by pro- 
viding part of the word itself, possibly with some errors. If 
the given key is a reasonable match to the corresponding 
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part of the stored word, the entire corrected word will ap- 
pear at the memory output. This is reminiscent of the way 
the human memory seems to behave-one aspect of a 
memory evokes many other associated ideas. The neural 
network performs this function by coding the stored mem- 
ories in the resistive interconnections. There are a number 
of ways of coding the interconnections to act as a content- 
addressable memory.[5-71 From a practical point of view it 
has become apparent that a simple template matching net- 
work followed by a maximum selector is the most efficient 
way of implementing this function in hardware. Fig. 3 shows 
the schematic of such a network. The left part of the net- 
work is a template matching network as described above 
and the right hand side consists of inhibitory interconnec- 
tions among the output neurons. If these inhibitory con- 
nections are much stronger than the excitatory connections 
in the template matching part, then only one output neu- 
ron will be high in a stable state. If several neurons are on 
they will inhibit each other and only one of them will sur- 
vive the fight while all the others are turned off. The output 
neuron that is getting the strongest input from the template 
matching network is the one that is turned on. Therefore, 
the one neuron that is high indicates which stored template 
best matches the input pattern. Several analog microelec- 
tronic circuits performing the associative memory function 
have been built. [S-101 

Learning 

One of the most interesting aspects of neural networks 
is their learning capability. A wide variety of learning al- 
gorithms have been developed.[b, 11-12]. In a neural net- 
work  learning is done  by adapt ively changing  the  
interconnection strengths between the neurons. In this way, 
for example, a classifier can be built, not by programming 
the network, but by presenting it with a number of training 
examples and allowing the network to build up  the dis- 
criminant function automatically. The learning capability of 
multilayered networks is one of the most active areas of 
neural network research right now. 

Fig. 4 shows a schematic arrangement for supervised 
learning. The network is presented with a set of training 
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examples. For each example, the output of the network is 
compared with the desired output and slight adjustments 
to the interconnection strengths in the network are made. 
With a proper weight-adjustment algorithm, e.g., the back- 
propagation algorithm Ill], numerous presentations of the 
training data can produce a network that gives the correct 
input-output relations for the training data. If the network 
has the proper architecture and if there are sufficient train- 
ing data [13], the network may be able to generalize, i.e., 
it will also give correct outputs for input data it has never 
seen before. 

From a hardware point of view the most important aspect 
is that most learning techniques require interconnection 
weights that are adjustable in small steps. Such an inter- 
connection requires considerable circuitry and is difficult to 
build in a small area. Various approaches to build networks 
with a high resolution in the weights are being explored; a 
few of them are described in the next section. 

For many learning schemes an analog implementation 
may not be suitable. For example, i t  seems that during 
learning, the back-propagation algorithm requires a reso- 
lution of more than 8 bits in the weights in order to learn 
a problem large enough to be of practical interest. Analog 
circuits with such a high precision can be built but the 
advantage of a smaller area compared with a digital circuit 
is lost when the precision has to be too high. Therefore, 
analog circuits are of greatest interest where only moderate 
precision is required. 

In the evaluation phase the network is very tolerant to 
low precision in the weights as well as in the neuron states. 
Typically, there are large numbers of inputs contributing 
to one result and random errors are reduced due to aver- 
aging. In one example, in a network with 60,000 weights 
that was trained to recognize hand-written digits, the res- 
olution in the weights was reduced to five bits and the 
neuron states were quantized to just three levels through- 
out most of the network. Despite this reduction in resolu- 
tion the performance of the network remained unchanged 
compared with the network that had the full precision of 

‘private communication by Y. LeCun 

IEEE CIRCUITS AND DEVICES MAGAZINE 

Authorized licensed use limited to: Baylor University. Downloaded on May 24, 2009 at 19:39 from IEEE Xplore.  Restrictions apply.



1 

FlS. 5 A blJiOJ’,l/ ~ J i ~ l ’ r ~ ~ l J l J i ~ C f ~ ~ l J i  icdicre t/lC J J l l l / t l / d I C O t i O J l  [lf t / I C  iLVi<$lt 
i l a i i i r  iilitli tlic i t i p i r t  sigml is ; ~ r n i ~ i ~ f c d  hy (7 XOR p t c .  

32 bits in the weights and the neuron states.‘ For the train- 
ing with the back-propagation algorithm, however, the full 
precision was required. 

This does not mean that analog circuits are limited to the 
evaluation phase and are of no interest for learning. But 
learning algorithms have to be chosen that are tolerant to 
imperfections of the hardware such as low precision. 

Two-dimensional Resistor Networks 

Circuits inspired by the architecture of the retina have 
been built by designers at Caltech. [14-151 These networks 
consist of grids of locally connected resistors plus photo- 
sensitive transistors. The circuits work directly with light 
input and can execute low-level vision functions such as 
computing spatial and temporal gradients of the light in- 
tensity. 

Examples of Analog Implementations 

The most important element in a network is the inter- 
connection. There are large numbers of interconnections in 
the network and typically the number of neurons that can 
be integrated on a chip is limited by the area required for 
the interconnections. In Fig. 1 the interconnectjons are drawn 
as simple resistors. Depending on the function of the net- 
work, the interconnections may have to be programmable 
and may require several bits of analog depth. 

Networks with fixed value resistors are of interest for 
applications where the function the network has to execute 
is known in advance and no changes will be needed during 
operation. The advantage of fixed-value resistors is their 
small size. Resistors made of aSi were built as small as 
0 . 2 5 ~ m  x 25p.m.[16] With a density of four resistors per 
square Fm, 4 x 10’ resistors could be packed into 1 cm2. 
Various other materials beside aSi have been tested such 
as Ge:Cu, Ge:AI, or cermets [17]. 

A network is more flexible if the interconnections are 
programmable. To achieve this, a storage cell for the weight 
is needed plus the connecting element, e.g., a resistor or a 
current source, controlled by the weight. Various ways of 
implementing these two elements have been explored. 
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If the input signals as well as the weights are binary, the 
multiplication between the neuron signal and the weight 
value reduces to a simple logic function (AND, XOR). An 
interconnection element with this function can be built in 
a small area. Fig. 5 shows an example of such a connec- 
tion.[l8] A static memory cell stores the weight bit and an 
XOR gate controlled by the weight and a bit of the input 
signal executes the multiplication. If switches S1 and S3 or 
S2 and S4 are enabled, current flows through resistor R1 
or R2 into the summing wire where all the contributions 
from the interconnections are added. The total current is 
then compared with a reference current in a comparator. 
A photomicrograph of the whole circuit is shown in Fig. 6 .  
It essentially implements the circuit shown in Fig. 2. The 
network stores 46 templates, each 96 bits long, hence there 
are 4,416 connections in the circuit. It has been designed 
for machine vision applications where it can execute tasks 
such as feature extraction. Analog computation is used only 
internally; the input as well as the output data are digital 
which makes integration in a digital system straightfor- 
ward. This circuit does a computation every 1OOns which 
corresponds to an evaluation of 44 billion connections per 
second. An older version of this circuit has been used ex- 
tensively for two years in machine vision experiments. A 
recognizer for handwritten digits achieving state of the art 
recognition rates was developed using this chip as a co- 
processor on a workstation. In this application the network 
performs the computationally intensive tasks of line thin- 
ning and feature extraction.[l9] 

For some applications, analog depth in the interconnec- 
tions is required. If the weights are stored digitally, then 
some sort of digital-to-analog converter is needed at each 
interconnection. Fig. 7 shows an example of a multiplying 
D/A converter.[lO] The transistors controlled by the input 
voltage work as current sources and their widths are ra- 
tioed to deliver a current of 1, 2, 4 and 8 times the basic 
current. Bits BO to 8 3  control switches that connect these 
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current sources to the positive summing wire. Bit B4 is the 
sign. If it is high, all the bottom switches are enabled, draw- 
ing a current from the negative summing wire. In this way 
positive or negative currents can be produced to give the 
weight a resolution of four bits plus sign. The contributions 
from all the interconnections are summed on the two wires. 
The two currents are subtracted from each other in a cur- 
rent mirror and the result is the input for the neuron. A 
matrix with 1024 such multiplying D/A converters has been 
built in CMOS technology. The circuit has been connected 
to external amplifiers and has been tested as an associative 
memory. [lo] 

The analog connection strength can also be stored as a 
charge package on a capacitor. Several groups are working 
on this concept [20-211 which has the potential for variable 
weight values with a high resolution and relatively small 
cell size. However, this dynamic storage technique requires 
refreshing since the charge on the capacitor leaks away. 
Refreshing analog values requires considerable overhead 
that may offset a lot of the advantage gained in smaller 
interconnection size. Fig. 8 shows an interconnection using 
two capacitors to store the weight. The difference in the 
voltages on the two capacitors provides the value of the 
weight. An analog multiplier multiplies the input voltage 
with the weight value and the output current is propor- 
tional to this product. A test matrix with 1020 such inter- 
connections has been built.[20] 

The circuits mentioned above have programmable inter- 
connections but the weight values have to be computed 
externally and are then loaded onto the chip. Simple on- 
chip learning has been demonstrated in one design where 
digital circuitry was added to the interconnections to up- 
date the weights automatically based on local information. 
A small network with 6 neurons and 15 interconnections 
of this type has been built.[22] 

Another learning chip implements an algorithm devel- 
oped by Kohonen.[6] It  contains 16 nodes and 112 inter- 
connections. [23] 

The designs described so far are all fabricated in standard 
CMOS technology and use current summing to compute 
sums of products. An alternative approach is to sum charge 
packages instead of currents. CCD technology is ideally 
suited for this type of computation. An exploratory design 
combining MNOS devices for the storage of the weights 
with CCD technology has been built with 26 neurons and 
169 synapses.[24] 

Several research teams are investigating devices that 
combine the storage and the multiplying function to build 
smaller interconnections. One potential device is the float- 
ing gate MOS transistor. This device combines nonvolatile 
storage (possibly with analog depth) and the connecting 
element in one device. The channel conductance hence the 
connection strength is determined by the charge stored on 
the floating gate. 

Several material systems that change their resistivity when 
an electrical programming pulse is applied have been used 
as variable connections. After the programming pulse is 
removed, the resistor value is constant while the device is 
used for the computation. Interconnections that can be 
written once have been built using aSi:H.[25] A material 
that can be programmed repeatedly is even more desirable. 
WO, has shown such behavior in a series of tests.[26] The 
programming speed is slow, on the order of seconds, but 
this may be improved. A key issue for such a material is 
that it is compatible with VLSI processing technologies. 

Discussion 

So far, hardware implementations of neural networks are 
primarily explorations of various design possibilities. A 
comparison of the number of interconnections in the var- 
ious circuits mentioned above indicates the tradeoff be- 
tween the complexity of the interconnections and their size. 
If more functionality such as high resolution or learning 
capability is put into an interconnection, fewer can fit onto 
a chip. The optimal solution depends on the application 
and on the system in which the network is integrated. 

The computational speed of analog networks built so far 
lies typically between 1 O Y  and 10" interconnections per sec- 
ond [27], a much higher rate than digital circuits can achieve. 
Board level emulators have been built with a speed of 10" 
to 10' interconnections per second. An emulator, on the 
other hand, can have much higher resolution in the inter- 
connections and neuron outputs and it is much more flex- 
ible than a hardware network. Most of the analog neural 
network circuits have not yet been integrated into systems 
and therefore it is difficult to estimate their true perforni- 
ance in applications. 

The size and the speed of the neural networks will in- 
crease as designers gain more experience with such circuits. 
Most of the networks described here are built in CMOS 
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technology with 2k.m to 3 q i  design rules; a considerable 
increase of the size of the circuits can be attained by switch- 
ing to l p m  or submicron technologies. A network designed 
recently at AT&T Bell Labs in 0 . Y p ~  technology contains 
32,000 interconnections. 

In addition to advances in technology, we expect a sub- 
stantial improvement of the computational power from a 
collaboration of theorists and hardware designers. A lot of 
problems, e.g., how much precision is required in the in- 
terconnections to solve a task, have not yet been studied 
thoroughly. So far, hardware designers have primarily been 
trying to build circuits based on theorists’ models that were 
in turn inspired by neurobiology. It is crucial for this field 
that theorists and hardware developers work closely to- 
gether and that  theoretical models are not only inspired by 
biological wetware but also take into account the limitations 
of the electronic hardware. 
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-DB(VM(2)) Loop Gain 
W 2 )  Loop Phase 

These additional analyses are really 
only approximations that hold for F 
< < Fc (the zero dB frequency of the 
open loop gain) and open loop gain 
> > loop gain because they are depen- 
dent upon the feedback network, so use 
them with caution. 

Even this simple example shows the 
wealth of feedback loop performance 
data available when  waveform 
mathematics is applied to SPICE. 

loop Cain Analysis 

The classical method of determining 
the loop gain of a feedback circuit in 
SPICE is shown in Fig. 2A. The large 
inductor and capacitor allow SPICE to 
find the DC operating point for the 
analysis, but open the feedback loop for 
the AC analysis and Vin is injected 
directly into the feedback path. The 

Fig. 2 A) Old method of determining loopgain. 
B )  New method, which does not disturb circuit 
impedances. 

loop gain is determined from analysis 
of node 2 and is only accurate if the im- 
pedance looking into node 2 is much 
less than the impedance looking into 
node 3 or: 

22 < < 2 3  Impedance Inequality 

The drawback to this classical method 
is that the impedance balance in the 
loop has been disturbed by the induc- 
tor capacitor combination. If the loop 
gain was in any way dependent on the 
OPAMP’s output impedance or the 
feedback network‘s impedance, the 
analysis would be in error. 

The new method as shown in Fig. 2B 
uses the waveform mathematics capa- 
bility of PSPICE along with a standard 
SPICE independent voltage source. The 
independent voltage source is an ideal 
entity in SPICE with zero series impe- 
dance and infinite parallel impedance. 
It is truly unrealizable in actual circuit 
design, but it can be put to good use 
with SPICE simulations. In Fig. 2B the 
voltage source itself breaks the feedback 
loop and does not change the im- 
pedance levels of the circuit at all. This 
preserves the integrity of the feedback 
loop while allowing a simple loop gain 
analysis. The loop gain in Fig. 2B is 
determined by: 

DB(VM(2)IVM(S)) Loop Gain 
W 2 ) - W 3 )  Loop Phase 

As with the transfer function analysis 
above, the open loop gain can also be 
found (with the same restrictions). 

The All in One Analysis 
The All in One analysis method 

shown in Fig. 3 allows almost all loop 
parameters to be determined from a 
single run. The ideal SPICE voltage 
source is inserted in the loop between 
nodes 1 and 2, allowing the following 
loop parameters to be determined: 

DB(VM(3)IVM(2)) Open Loop Gain 
W(3)-W2) Open Loop Phase 

DB(VM(l)IVM(2)) Loop Gain 
( W l ) - W 2 )  Loop Phase 

Fig. 3 The ”Big Gun” analysis. Almost all loop 
parameters are available with one PSPICE run. 

Noise Gain DB(VM(3)) 
W 3 )  Noise Phase 

All of these important loop para- 
meters can be determined with a single 
PSPICE run with no penalty on run 
time since PSPICE stores the results of 
each node in the analysisanyway. With 
a circuit setup as in Fig. 3, important 
loop parameters like gain and phase 
margins can be determined along with 
how the circuit will respond to amplifier 
noise. 

Putting I t  All Together 
Each of these methods may be used 

separately or any and all source com- 
binations can be written into a SPICE 
netlist at the same time. Simply set the 
desired source on with a “AC 1” state- 
ment or off with a ”AC 0” statement 
for the particular analysis to be run. For 
example, the All In One analysis can be 
used with the Transfer Function 
analysis and by setting the desired 
sources either on or off, the proper 
SPICE run can be made. This is because 
an independent source in SPICE when 
turned off displays ideal passive 
characteristics and will not disturb the 
circuit’s impedance levels. 
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